Suppr超能文献

在新冠疫情期间,可重复性科学对于建立更强大的证据基础至关重要。

Reproducible Science Is Vital for a Stronger Evidence Base During the COVID-19 Pandemic.

作者信息

Sy Karla Therese L, White Laura F, Nichols Brooke E

机构信息

Department of Epidemiology Boston University School of Public Health Boston MA USA.

Department of Global Health Boston University School of Public Health Boston MA USA.

出版信息

Geogr Anal. 2021 Nov 16. doi: 10.1111/gean.12314.

Abstract

Reproducible research becomes even more imperative as we build the evidence base on SARS-CoV-2 epidemiology, diagnosis, prevention, and treatment. In his study, Paez assessed the reproducibility of COVID-19 research during the pandemic, using a case study of population density. He found that most articles that assess the relationship of population density and COVID-19 outcomes do not publicly share data and code, except for a few, including our paper, which he stated "illustrates the importance of good reproducibility practices". Paez recreated our analysis using our code and data from the perspective of spatial analysis, and his new model came to a different conclusion. The disparity between our and Paez's findings, as well as other existing literature on the topic, give greater impetus to the need for further research. As there has been near exponential growth of COVID-19 research across a wide range of scientific disciplines, reproducible science is a vital component to produce reliable, rigorous, and robust evidence on COVID-19, which will be essential to inform clinical practice and policy in order to effectively eliminate the pandemic.

摘要

随着我们建立关于严重急性呼吸综合征冠状病毒2(SARS-CoV-2)流行病学、诊断、预防和治疗的证据基础,可重复性研究变得更加迫切。在他的研究中,佩兹以人口密度为例,评估了大流行期间新型冠状病毒肺炎(COVID-19)研究的可重复性。他发现,除了少数几篇文章(包括我们的论文,他称其“说明了良好的可重复性实践的重要性”)外,大多数评估人口密度与COVID-19结果之间关系的文章都没有公开共享数据和代码。佩兹从空间分析的角度使用我们的代码和数据重新进行了我们的分析,他的新模型得出了不同的结论。我们的研究结果与佩兹的研究结果以及关于该主题的其他现有文献之间的差异,进一步推动了对进一步研究的需求。由于COVID-19研究在广泛的科学学科中几乎呈指数级增长,可重复性科学是产生关于COVID-19的可靠、严谨和有力证据的重要组成部分,这对于为临床实践和政策提供信息以有效消除大流行至关重要。

相似文献

4
Clinical trials and the COVID-19 pandemic.临床试验与新冠疫情
Hell J Nucl Med. 2020 Jan-Apr;23(1):4-5. doi: 10.1967/s002449912014.
9
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

本文引用的文献

3
Spreading of COVID-19: Density matters.新冠病毒传播:密度很重要。
PLoS One. 2020 Dec 23;15(12):e0242398. doi: 10.1371/journal.pone.0242398. eCollection 2020.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验