Suppr超能文献

基于卷积神经网络的中文教学数据挖掘与分析系统优化。

Optimization of Data Mining and Analysis System for Chinese Language Teaching Based on Convolutional Neural Network.

机构信息

Department of Literature, Northeast Normal University, Changchun 130024, China.

Changchun Education Collage, Changchun 130033, China.

出版信息

Comput Intell Neurosci. 2021 Dec 3;2021:1148954. doi: 10.1155/2021/1148954. eCollection 2021.

Abstract

Chinese language is also an important way to understand Chinese culture and an important carrier to inherit and carry forward Chinese traditional culture. Chinese language teaching is an important way to inherit and develop Chinese language. Therefore, in the era of big data, data mining and analysis of Chinese language teaching can effectively sum up experience and draw lessons, so as to improve the quality of Chinese language teaching and promote Chinese language culture. Text clustering technology can analyze and process the text information data and divide the text information data with the same characteristics into the same category. Based on big data, combined with convolutional neural network and K-means algorithm, this paper proposes a text clustering method based on convolutional neural network (CNN), constructs a Chinese language teaching data mining analysis system, and optimizes it so that the system can better mine Chinese character data in Chinese language teaching data in depth and comprehensively. The results show that the optimized k-means algorithm needs 683 iterations to achieve the target accuracy. The average K-measure value of the optimized system is 0.770, which is higher than that of the original system. The results also show that K-means algorithm can significantly improve the clustering effect, optimize the data mining analysis system of Chinese language teaching, and deeply mine the Chinese data in Chinese language teaching, so as to improve the quality of Chinese language teaching.

摘要

中文也是了解中华文化的重要途径,是传承和弘扬中华传统文化的重要载体。语文教学是传承和发展中文的重要途径。因此,在大数据时代,对语文教学进行数据挖掘和分析,可以有效地总结经验、汲取教训,提高语文教学质量,促进语文文化的发展。文本聚类技术可以对文本信息数据进行分析和处理,将具有相同特征的文本信息数据划分到同一类别中。本文基于大数据,结合卷积神经网络和 K-means 算法,提出了一种基于卷积神经网络(CNN)的文本聚类方法,构建了语文教学数据挖掘分析系统,并对其进行了优化,使系统能够更好地深入全面地挖掘语文教学数据中的汉字数据。结果表明,优化后的 K-means 算法需要 683 次迭代才能达到目标精度。优化系统的平均 K 值为 0.770,高于原始系统。结果还表明,K-means 算法可以显著提高聚类效果,优化语文教学数据挖掘分析系统,深入挖掘语文教学中的汉字数据,从而提高语文教学质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bb/8664500/8ca62a10e81b/CIN2021-1148954.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验