Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Research Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.
Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
Glob Chang Biol. 2020 Nov;26(11):6040-6061. doi: 10.1111/gcb.15317. Epub 2020 Sep 13.
Global change biology has been entering a big data era due to the vast increase in availability of both environmental and biological data. Big data refers to large data volume, complex data sets, and multiple data sources. The recent use of such big data is improving our understanding of interactions between biological systems and global environmental changes. In this review, we first explore how big data has been analyzed to identify the general patterns of biological responses to global changes at scales from gene to ecosystem. After that, we investigate how observational networks and space-based big data have facilitated the discovery of emergent mechanisms and phenomena on the regional and global scales. Then, we evaluate the predictions of terrestrial biosphere under global changes by big modeling data. Finally, we introduce some methods to extract knowledge from big data, such as meta-analysis, machine learning, traceability analysis, and data assimilation. The big data has opened new research opportunities, especially for developing new data-driven theories for improving biological predictions in Earth system models, tracing global change impacts across different organismic levels, and constructing cyberinfrastructure tools to accelerate the pace of model-data integrations. These efforts will uncork the bottleneck of using big data to understand biological responses and adaptations to future global changes.
由于环境和生物数据的可用性大大增加,全球变化生物学已经进入大数据时代。大数据是指大量的数据量、复杂的数据集和多数据源。最近对这些大数据的利用提高了我们对生物系统与全球环境变化之间相互作用的理解。在这篇综述中,我们首先探讨了如何分析大数据,以确定从基因到生态系统尺度上生物对全球变化的一般反应模式。之后,我们研究了观测网络和基于空间的大数据如何促进对区域和全球尺度上新兴机制和现象的发现。然后,我们通过大模型数据评估了全球变化下陆地生物圈的预测。最后,我们介绍了一些从大数据中提取知识的方法,例如元分析、机器学习、溯源分析和数据同化。大数据为研究提供了新的机会,特别是对于开发新的数据驱动理论,以提高地球系统模型中生物预测的准确性,追踪不同生物层次上的全球变化影响,以及构建网络基础设施工具,以加速模型与数据的整合。这些努力将打破利用大数据理解生物对未来全球变化的反应和适应的瓶颈。