Suppr超能文献

基于多层自组织神经网络和数据挖掘技术的中文语言特征分析。

Chinese Language Feature Analysis Based on Multilayer Self-Organizing Neural Network and Data Mining Techniques.

机构信息

School of Foreign Studies, Shandong University of Finance and Economics, Jinan 250014, China.

College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China.

出版信息

Comput Intell Neurosci. 2021 Oct 14;2021:4105784. doi: 10.1155/2021/4105784. eCollection 2021.

Abstract

As one of the oldest languages in the world, Chinese has a long cultural history and unique language charm. The multilayer self-organizing neural network and data mining techniques have been widely used and can achieve high-precision prediction in different fields. However, they are hardly applied to Chinese language feature analysis. In order to accurately analyze the characteristics of Chinese language, this paper uses the multilayer self-organizing neural network and the corresponding data mining technology for feature recognition and then compared it with other different types of neural network algorithms. The results show that the multilayer self-organizing neural network can make the accuracy, recall, and F1 score of feature recognition reach 68.69%, 80.21%, and 70.19%, respectively, when there are many samples. Under the influence of strong noise, it keeps high efficiency of feature analysis. This shows that the multilayer self-organizing neural network has superior performance and can provide strong support for Chinese language feature analysis.

摘要

作为世界上最古老的语言之一,中文拥有悠久的文化历史和独特的语言魅力。多层自组织神经网络和数据挖掘技术已经得到了广泛的应用,并能在不同领域实现高精度的预测。然而,它们几乎没有被应用于中文语言特征分析。为了准确分析中文语言的特点,本文使用多层自组织神经网络和相应的数据挖掘技术进行特征识别,并与其他不同类型的神经网络算法进行比较。结果表明,在样本较多的情况下,多层自组织神经网络可以使特征识别的准确率、召回率和 F1 得分分别达到 68.69%、80.21%和 70.19%。在强噪声的影响下,它仍然保持着高效的特征分析能力。这表明多层自组织神经网络具有优越的性能,可以为中文语言特征分析提供强有力的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8027/8531822/63a1d953a9fa/CIN2021-4105784.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验