Suppr超能文献

通过基于人工神经网络模糊推理系统(ANFIS)开发模型来预测水处理厂中混凝剂的最佳剂量。

Prediction of the optimal dosage of coagulants in water treatment plants through developing models based on artificial neural network fuzzy inference system (ANFIS).

作者信息

Narges Shakeri, Ghorban Asgari, Hassan Khotanlou, Mohammad Khazaei

机构信息

Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.

Social Determinants of Health Research Center (SDHRC), Hamadan University of Medical Sciences, Hamadan, Iran.

出版信息

J Environ Health Sci Eng. 2021 Aug 9;19(2):1543-1553. doi: 10.1007/s40201-021-00710-0. eCollection 2021 Dec.

Abstract

PURPOSE

Coagulation and flocculation are the prominent processes and unit-operations in water treatment plants. One of the most challenging operations in water treatment process is determining of the coagulant dose.

METHOD

The Jar-test method is usually used to determine the coagulant dose. Considering that this traditional method is time consuming, associated with human error and highly affected by raw water quality fluctuations. In this study, artificial fuzzy neural network (ANFIS) according to subtractive clustering (SUB) method was applied in order to determine the optimal dose of coagulant in the water treatment plants.

RESULTS

Adopting SUB method tend to moderate the number of rules and the interconnections besides enhancing the model responsibility and smart model recognition. The amount of pH, turbidity of raw water influent, alkalinity, temperature, and electrical conductivity were collected as input data.

CONCLUSIONS

The results of modeling by ANFIS with correlation coefficients of 0.85 and 0.84 and RMSE 1.32 and 1.83, respectively, for alum and polyaluminum chloride (PAC) coagulant dose, indicated that ANFIS is an effective method for determination of the optimal coagulation dose in the water treatment plant.

摘要

目的

混凝和絮凝是水处理厂中的重要工艺和单元操作。水处理过程中最具挑战性的操作之一是确定混凝剂剂量。

方法

通常采用烧杯试验法来确定混凝剂剂量。鉴于这种传统方法耗时、存在人为误差且受原水水质波动影响较大。在本研究中,应用基于减法聚类(SUB)方法的人工模糊神经网络(ANFIS)来确定水处理厂混凝剂的最佳剂量。

结果

采用SUB方法有助于减少规则数量和连接数量,同时增强模型的可靠性和智能模型识别能力。收集进水原水的pH值、浊度、碱度、温度和电导率作为输入数据。

结论

对于明矾和聚合氯化铝(PAC)混凝剂剂量,ANFIS建模结果的相关系数分别为0.85和0.84,均方根误差分别为1.32和1.83,表明ANFIS是确定水处理厂最佳混凝剂量的有效方法。

相似文献

10
Evaluating Al-based coagulants for drinking water facilities using Jar test and CCD/RSM analysis.使用Jar 测试和 CCD/RSM 分析评估饮用水处理厂用 Al 基混凝剂。
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2022;57(13-14):1138-1145. doi: 10.1080/10934529.2022.2160601. Epub 2022 Dec 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验