Suppr超能文献

用于亲和力估计的无监督随机森林。

Unsupervised random forest for affinity estimation.

作者信息

Yi Yunai, Sun Diya, Li Peixin, Kim Tae-Kyun, Xu Tianmin, Pei Yuru

机构信息

Key Laboratory of Machine Perception (MOE), Department of Machine Intelligence, Peking University, Beijing, 100871 China.

Department of Electrical and Electronic Engineering, Imperial College London, London, UK.

出版信息

Comput Vis Media (Beijing). 2022;8(2):257-272. doi: 10.1007/s41095-021-0241-9. Epub 2021 Dec 6.

Abstract

This paper presents an unsupervised clustering random-forest-based metric for affinity estimation in large and high-dimensional data. The criterion used for node splitting during forest construction can handle rank-deficiency when measuring cluster compactness. The binary forest-based metric is extended to continuous metrics by exploiting both the common traversal path and the smallest shared parent node. The proposed forest-based metric efficiently estimates affinity by passing down data pairs in the forest using a limited number of decision trees. A pseudo-leaf-splitting (PLS) algorithm is introduced to account for spatial relationships, which regularizes affinity measures and overcomes inconsistent leaf assign-ments. The random-forest-based metric with PLS facilitates the establishment of consistent and point-wise correspondences. The proposed method has been applied to automatic phrase recognition using color and depth videos and point-wise correspondence. Extensive experiments demonstrate the effectiveness of the proposed method in affinity estimation in a comparison with the state-of-the-art.

摘要

本文提出了一种基于无监督聚类随机森林的度量方法,用于在大型高维数据中估计亲和度。在森林构建过程中用于节点分裂的准则在测量聚类紧凑性时可以处理秩亏问题。基于二元森林的度量通过利用公共遍历路径和最小共享父节点扩展为连续度量。所提出的基于森林的度量通过在森林中使用有限数量的决策树向下传递数据对来有效地估计亲和度。引入了一种伪叶分裂(PLS)算法来考虑空间关系,该算法规范了亲和度度量并克服了不一致的叶分配问题。带有PLS的基于随机森林的度量有助于建立一致的逐点对应关系。所提出的方法已应用于使用彩色和深度视频以及逐点对应关系的自动短语识别。大量实验表明,与现有技术相比,所提出的方法在亲和度估计方面是有效的。

相似文献

1
Unsupervised random forest for affinity estimation.用于亲和力估计的无监督随机森林。
Comput Vis Media (Beijing). 2022;8(2):257-272. doi: 10.1007/s41095-021-0241-9. Epub 2021 Dec 6.
2
Spatially Consistent Supervoxel Correspondences of Cone-Beam Computed Tomography Images.基于锥束 CT 图像的空间一致超体素对应。
IEEE Trans Med Imaging. 2018 Oct;37(10):2310-2321. doi: 10.1109/TMI.2018.2829629. Epub 2018 Apr 23.
3
Random forest construction with robust semisupervised node splitting.基于稳健半监督节点分裂的随机森林构建。
IEEE Trans Image Process. 2015 Jan;24(1):471-83. doi: 10.1109/TIP.2014.2378017. Epub 2014 Dec 4.
5
Oblique and rotation double random forest.倾斜和旋转双重随机森林。
Neural Netw. 2022 Sep;153:496-517. doi: 10.1016/j.neunet.2022.06.012. Epub 2022 Jun 18.
8
Partially supervised speaker clustering.部分监督的说话人聚类。
IEEE Trans Pattern Anal Mach Intell. 2012 May;34(5):959-71. doi: 10.1109/TPAMI.2011.174.

本文引用的文献

3
Dynamic Affinity Graph Construction for Spectral Clustering Using Multiple Features.基于多特征的谱聚类动态亲和图构建
IEEE Trans Neural Netw Learn Syst. 2018 Dec;29(12):6323-6332. doi: 10.1109/TNNLS.2018.2829867. Epub 2018 May 18.
4
Spatially Consistent Supervoxel Correspondences of Cone-Beam Computed Tomography Images.基于锥束 CT 图像的空间一致超体素对应。
IEEE Trans Med Imaging. 2018 Oct;37(10):2310-2321. doi: 10.1109/TMI.2018.2829629. Epub 2018 Apr 23.
8
A compact representation of visual speech data using latent variables.使用潜在变量对视觉语音数据进行紧凑表示。
IEEE Trans Pattern Anal Mach Intell. 2014 Jan;36(1):181-7. doi: 10.1109/TPAMI.2013.173.
9
Algorithms to automatically quantify the geometric similarity of anatomical surfaces.自动量化解剖表面几何相似性的算法。
Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18221-6. doi: 10.1073/pnas.1112822108. Epub 2011 Oct 24.
10
Hough forests for object detection, tracking, and action recognition.用于目标检测、跟踪和动作识别的 Hough 森林。
IEEE Trans Pattern Anal Mach Intell. 2011 Nov;33(11):2188-202. doi: 10.1109/TPAMI.2011.70.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验