Suppr超能文献

基于聚类与分类方法综合运用的基因表达谱提取技术

Technique of Gene Expression Profiles Extraction Based on the Complex Use of Clustering and Classification Methods.

作者信息

Babichev Sergii, Škvor Jiří

机构信息

Department of Informatics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 40096 Ústí nad Labem, Czech Republic.

Department of Computer Science, Software Engineering and Economic Cybernetics, Faculty of Computer Science, Physics and Mathematics, Kherson State University, Kherson 73003, Ukraine.

出版信息

Diagnostics (Basel). 2020 Aug 12;10(8):584. doi: 10.3390/diagnostics10080584.

Abstract

In this paper, we present the results of the research concerning extraction of informative gene expression profiles from high-dimensional array of gene expressions considering the state of patients' health using clustering method, ML-based binary classifiers and fuzzy inference system. Applying of the proposed stepwise procedure can allow us to extract the most informative genes taking into account both the subtypes of disease or state of the patient's health for further reconstruction of gene regulatory networks based on the allocated genes and following simulation of the reconstructed models. We used the publicly available gene expressions data as the experimental ones which were obtained using DNA microarray experiments and contained two types of patients' gene expression profiles-the patients with lung cancer tumor and healthy patients. The stepwise procedure of the data processing assumes the following steps-in the beginning, we reduce the number of genes by removing non-informative genes in terms of statistical criteria and Shannon entropy; then, we perform the stepwise hierarchical clustering of gene expression profiles at hierarchical levels from 1 to 10 using the SOTA (Self-Organizing Tree Algorithm) clustering algorithm with correlation distance metric. The quality of the obtained clustering was evaluated using the complex clustering quality criterion which is considered both the gene expression profiles distribution relative to center of the clusters where these gene expression profiles are allocated and the centers of the clusters distribution. The result of this stage execution was a selection of the optimal cluster at each of the hierarchical levels which corresponded to the minimum value of the quality criterion. At the next step, we have implemented a classification procedure of the examined objects using four well known binary classifiers-logistic regression, support-vector machine, decision trees and random forest classifier. The effectiveness of the appropriate technique was evaluated based on the use of ROC (Receiver Operating Characteristic) analysis using criteria, included as the components, the errors of both the first and the second kinds. The final decision concerning the extraction of the most informative subset of gene expression profiles was taken based on the use of the fuzzy inference system, the inputs of which are the results of the appropriate single classifiers operation and the output is the final solution concerning state of the patient's health. To our mind, the implementation of the proposed stepwise procedure of the informative gene expression profiles extraction create the conditions for the increasing effectiveness of the further procedure of gene regulatory networks reconstruction and the following simulation of the reconstructed models considering the subtypes of the disease and/or state of the patient's health.

摘要

在本文中,我们展示了一项研究成果,该研究涉及使用聚类方法、基于机器学习的二元分类器和模糊推理系统,从考虑患者健康状况的高维基因表达阵列中提取信息丰富的基因表达谱。应用所提出的逐步程序,我们能够在考虑疾病亚型或患者健康状况的同时,提取出最具信息性的基因,以便基于所分配的基因进一步重建基因调控网络,并对重建模型进行后续模拟。我们使用公开可用的基因表达数据作为实验数据,这些数据通过DNA微阵列实验获得,包含两种类型的患者基因表达谱——肺癌肿瘤患者和健康患者。数据处理的逐步程序包括以下步骤:首先,根据统计标准和香农熵去除无信息基因,从而减少基因数量;然后,我们使用具有相关距离度量的SOTA(自组织树算法)聚类算法,对基因表达谱进行从1到10层次的逐步层次聚类。使用综合聚类质量标准评估所获得聚类的质量,该标准既考虑了相对于分配这些基因表达谱的聚类中心的基因表达谱分布,也考虑了聚类中心的分布。此阶段执行的结果是在每个层次级别上选择对应于质量标准最小值的最优聚类。在下一步中,我们使用四个著名的二元分类器——逻辑回归、支持向量机、决策树和随机森林分类器,对被检查对象实施分类程序。基于使用包含第一类和第二类错误作为组成部分的ROC(受试者工作特征)分析,评估相应技术的有效性。关于提取最具信息性的基因表达谱子集的最终决策,是基于使用模糊推理系统做出的,其输入是相应单个分类器操作的结果,输出是关于患者健康状况的最终解决方案。我们认为,实施所提出的信息丰富的基因表达谱提取逐步程序,为提高基因调控网络重建的后续程序以及考虑疾病亚型和/或患者健康状况对重建模型进行后续模拟的有效性创造了条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f41b/7460566/dea01c3cdb6e/diagnostics-10-00584-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验