Suppr超能文献

适用于新冠疫情数据的新离散分布。

The new discrete distribution with application to COVID-19 Data.

作者信息

Almetwally Ehab M, Abdo Doaa A, Hafez E H, Jawa Taghreed M, Sayed-Ahmed Neveen, Almongy Hisham M

机构信息

Faculty of Business Administration, Delta University of Science and Technology, Gamasa, 11152, Egypt.

Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, Egypt.

出版信息

Results Phys. 2022 Jan;32:104987. doi: 10.1016/j.rinp.2021.104987. Epub 2021 Dec 5.

Abstract

This research aims to model the COVID-19 in different countries, including Italy, Puerto Rico, and Singapore. Due to the great applicability of the discrete distributions in analyzing count data, we model a new novel discrete distribution by using the survival discretization method. Because of importance Marshall-Olkin family and the inverse Toppe-Leone distribution, both of them were used to introduce a new discrete distribution called Marshall-Olkin inverse Toppe-Leone distribution, this new distribution namely the new discrete distribution called discrete Marshall-Olkin Inverse Toppe-Leone (DMOITL). This new model possesses only two parameters, also many properties have been obtained such as reliability measures and moment functions. The classical method as likelihood method and Bayesian estimation methods are applied to estimate the unknown parameters of DMOITL distributions. The Monte-Carlo simulation procedure is carried out to compare the maximum likelihood and Bayesian estimation methods. The highest posterior density (HPD) confidence intervals are used to discuss credible confidence intervals of parameters of new discrete distribution for the results of the Markov Chain Monte Carlo technique (MCMC).

摘要

本研究旨在对包括意大利、波多黎各和新加坡在内的不同国家的新冠疫情进行建模。由于离散分布在分析计数数据方面具有很大的适用性,我们使用生存离散化方法构建了一种新的离散分布。鉴于马歇尔 - 奥林斯基族和逆托普 - 莱昂内分布的重要性,我们利用它们引入了一种新的离散分布,称为马歇尔 - 奥林斯基逆托普 - 莱昂内分布,这种新分布即所谓的离散马歇尔 - 奥林斯基逆托普 - 莱昂内(DMOITL)离散分布。这个新模型仅具有两个参数,并且还获得了许多性质,如可靠性度量和矩函数。应用经典方法如似然方法和贝叶斯估计方法来估计DMOITL分布的未知参数。进行蒙特卡罗模拟程序以比较最大似然估计和贝叶斯估计方法。使用最高后验密度(HPD)置信区间来讨论马尔可夫链蒙特卡罗技术(MCMC)结果中新型离散分布参数的可信置信区间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae1e/8645255/daffa6a3e5f0/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验