Suppr超能文献

新冠疫情数据集建模中的离散分布概述

An Overview of Discrete Distributions in Modelling COVID-19 Data Sets.

作者信息

Almetwally Ehab M, Dey Sanku, Nadarajah Saralees

机构信息

Faculty of Business Administration, Delta University of Science and Technology, Gamasa, 11152 Egypt.

The Scientific Association for Studies and Applied Research (SASAR), Al Manzalah, Egypt.

出版信息

Sankhya Ser A. 2022 Sep 9:1-28. doi: 10.1007/s13171-022-00291-6.

Abstract

The mathematical modeling of the coronavirus disease-19 (COVID-19) pandemic has been attempted by a large number of researchers from the very beginning of cases worldwide. The purpose of this research work is to find and classify the modelling of COVID-19 data by determining the optimal statistical modelling to evaluate the regular count of new COVID-19 fatalities, thus requiring discrete distributions. Some discrete models are checked and reviewed, such as Binomial, Poisson, Hypergeometric, discrete negative binomial, beta-binomial, Skellam, beta negative binomial, Burr, discrete Lindley, discrete alpha power inverse Lomax, discrete generalized exponential, discrete Marshall-Olkin Generalized exponential, discrete Gompertz-G-exponential, discrete Weibull, discrete inverse Weibull, exponentiated discrete Weibull, discrete Rayleigh, and new discrete Lindley. The probability mass function and the hazard rate function are addressed. Discrete models are discussed based on the maximum likelihood estimates for the parameters. A numerical analysis uses the regular count of new casualties in the countries of Angola,Ethiopia, French Guiana, El Salvador, Estonia, and Greece. The empirical findings are interpreted in-depth.

摘要

从全球出现病例伊始,众多研究人员就尝试对2019冠状病毒病(COVID-19)大流行进行数学建模。本研究工作的目的是通过确定最优统计模型来评估新增COVID-19死亡病例的常规计数,从而对COVID-19数据的建模进行查找和分类,这需要离散分布。对一些离散模型进行了检验和综述,如二项分布、泊松分布、超几何分布、离散负二项分布、贝塔-二项分布、斯凯拉姆分布、贝塔负二项分布、伯尔分布、离散林德利分布、离散α幂逆洛马克斯分布、离散广义指数分布、离散马歇尔-奥尔金广义指数分布、离散冈珀茨-G-指数分布、离散威布尔分布、离散逆威布尔分布、指数化离散威布尔分布、离散瑞利分布和新离散林德利分布。探讨了概率质量函数和风险率函数。基于参数的最大似然估计对离散模型进行了讨论。一项数值分析使用了安哥拉、埃塞俄比亚、法属圭亚那、萨尔瓦多、爱沙尼亚和希腊等国新增伤亡病例的常规计数。对实证结果进行了深入解读。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3124/9461386/0984a0426d6b/13171_2022_291_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验