Suppr超能文献

RNA二级结构调控片段在平坦基底上的吸附。

RNA Secondary Structures Regulate Adsorption of Fragments onto Flat Substrates.

作者信息

Poblete Simón, Božič Anže, Kanduč Matej, Podgornik Rudolf, Guzman Horacio V

机构信息

Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia 5091000, Chile.

Computational Biology Lab, Fundación Ciencia & Vida, Santiago 7780272, Chile.

出版信息

ACS Omega. 2021 Nov 19;6(48):32823-32831. doi: 10.1021/acsomega.1c04774. eCollection 2021 Dec 7.

Abstract

RNA is a functionally rich molecule with multilevel, hierarchical structures whose role in the adsorption to molecular substrates is only beginning to be elucidated. Here, we introduce a multiscale simulation approach that combines a tractable coarse-grained RNA structural model with an interaction potential of a structureless flat adsorbing substrate. Within this approach, we study the specific role of stem-hairpin and multibranch RNA secondary structure motifs on its adsorption phenomenology. Our findings identify a dual regime of adsorption for short RNA fragments with and without the secondary structure and underline the adsorption efficiency in both cases as a function of the surface interaction strength. The observed behavior results from an interplay between the number of contacts formed at the surface and the conformational entropy of the RNA molecule. The adsorption phenomenology of RNA seems to persist also for much longer RNAs as qualitatively observed by comparing the trends of our simulations with a theoretical approach based on an ideal semiflexible polymer chain.

摘要

RNA是一种功能丰富的分子,具有多层次的等级结构,其在吸附分子底物方面的作用才刚刚开始被阐明。在这里,我们引入了一种多尺度模拟方法,该方法将易于处理的粗粒度RNA结构模型与无结构的平面吸附底物的相互作用势相结合。在这种方法中,我们研究了茎环和多分支RNA二级结构基序在其吸附现象学中的具体作用。我们的研究结果确定了具有和不具有二级结构的短RNA片段的双重吸附机制,并强调了在这两种情况下吸附效率与表面相互作用强度的函数关系。观察到的行为是由表面形成的接触数量与RNA分子的构象熵之间的相互作用导致的。通过将我们的模拟趋势与基于理想半柔性聚合物链的理论方法进行比较定性观察,RNA的吸附现象似乎在更长的RNA中也持续存在。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa2/8655909/73ce26ac1662/ao1c04774_0002.jpg

相似文献

1
RNA Secondary Structures Regulate Adsorption of Fragments onto Flat Substrates.
ACS Omega. 2021 Nov 19;6(48):32823-32831. doi: 10.1021/acsomega.1c04774. eCollection 2021 Dec 7.
2
Controlling adsorption of semiflexible polymers on planar and curved substrates.
J Chem Phys. 2013 Jul 21;139(3):034903. doi: 10.1063/1.4813021.
5
Dynamics of competitive polymer adsorption onto planar surfaces in good solvent.
J Phys Chem B. 2010 Mar 25;114(11):3741-53. doi: 10.1021/jp908676p.
6
Thermodynamics of polymer adsorption to a flexible membrane.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 1):031803. doi: 10.1103/PhysRevE.84.031803. Epub 2011 Sep 21.
8
Adsorption of semiflexible block copolymers on homogeneous surfaces.
J Chem Phys. 2005 Nov 22;123(20):204703. doi: 10.1063/1.2101526.
9
Computer simulation of polypeptide adsorption on model biomaterials.
Phys Chem Chem Phys. 2005 Nov 7;7(21):3651-63. doi: 10.1039/b506813d. Epub 2005 Aug 24.
10
Nonmonotonic adsorption behavior of semiflexible polymers.
J Chem Phys. 2020 Jul 21;153(3):034902. doi: 10.1063/5.0014209.

引用本文的文献

2
Unknotting RNA: A method to resolve computational artifacts.
PLoS Comput Biol. 2025 Mar 20;21(3):e1012843. doi: 10.1371/journal.pcbi.1012843. eCollection 2025 Mar.
3
2Danalysis: A toolbox for analysis of lipid membranes and biopolymers in two-dimensional space.
bioRxiv. 2025 Mar 2:2025.02.27.640563. doi: 10.1101/2025.02.27.640563.
4
The role of RNA structural motifs in RNA-lipid raft interaction.
Sci Rep. 2025 Feb 25;15(1):6777. doi: 10.1038/s41598-025-91093-x.
5
RNA Order Regulates Its Interactions with Zwitterionic Lipid Bilayers.
Nano Lett. 2025 Jan 8;25(1):77-83. doi: 10.1021/acs.nanolett.4c04153. Epub 2024 Dec 24.
6
Adsorption-Driven Deformation and Footprints of the RBD Proteins in SARS-CoV-2 Variants on Biological and Inanimate Surfaces.
J Chem Inf Model. 2024 Aug 12;64(15):5977-5990. doi: 10.1021/acs.jcim.4c00460. Epub 2024 Jul 31.
7
8
Single-chain models illustrate the 3D RNA folding shape during translation.
Biophys Rep (N Y). 2022 Aug 5;2(3):100065. doi: 10.1016/j.bpr.2022.100065. eCollection 2022 Sep 14.

本文引用的文献

2
Advances in RNA 3D Structure Modeling Using Experimental Data.
Front Genet. 2020 Oct 26;11:574485. doi: 10.3389/fgene.2020.574485. eCollection 2020.
3
Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements.
Nucleic Acids Res. 2020 Dec 16;48(22):12436-12452. doi: 10.1093/nar/gkaa1053.
4
Analysis of RNA-protein networks with RNP-MaP defines functional hubs on RNA.
Nat Biotechnol. 2021 Mar;39(3):347-356. doi: 10.1038/s41587-020-0709-7. Epub 2020 Oct 19.
5
Perspectives on Viral RNA Genomes and the RNA Folding Problem.
Viruses. 2020 Oct 5;12(10):1126. doi: 10.3390/v12101126.
6
An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma.
Nature. 2020 Sep;585(7823):107-112. doi: 10.1038/s41586-020-2537-9. Epub 2020 Jul 29.
7
Determination of RNA structural diversity and its role in HIV-1 RNA splicing.
Nature. 2020 Jun;582(7812):438-442. doi: 10.1038/s41586-020-2253-5. Epub 2020 May 6.
8
Cellular Uptake of Active Particles.
Phys Rev Lett. 2020 May 15;124(19):198102. doi: 10.1103/PhysRevLett.124.198102.
9
Genome organization and interaction with capsid protein in a multipartite RNA virus.
Proc Natl Acad Sci U S A. 2020 May 19;117(20):10673-10680. doi: 10.1073/pnas.1915078117. Epub 2020 May 1.
10
Diffusive transport of nanoscale objects through cell membranes: a computational perspective.
Soft Matter. 2020 Apr 29;16(16):3869-3881. doi: 10.1039/c9sm02338k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验