Suppr超能文献

技术说明:使用全卷积神经网络在 CT 图像中进行半自动前列腺分割时,通过最小化手动交互进行图像标注的效果。

Technical note: The effect of image annotation with minimal manual interaction for semiautomatic prostate segmentation in CT images using fully convolutional neural networks.

机构信息

Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas, USA.

Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA.

出版信息

Med Phys. 2022 Feb;49(2):1153-1160. doi: 10.1002/mp.15404. Epub 2021 Dec 22.

Abstract

PURPOSE

The goal is to study the performance improvement of a deep learning algorithm in three-dimensional (3D) image segmentation through incorporating minimal user interaction into a fully convolutional neural network (CNN).

METHODS

A U-Net CNN was trained and tested for 3D prostate segmentation in computed tomography (CT) images. To improve the segmentation accuracy, the CNN's input images were annotated with a set of border landmarks to supervise the network for segmenting the prostate. The network was trained and tested again with annotated images after 5, 10, 15, 20, or 30 landmark points were used.

RESULTS

Compared to fully automatic segmentation, the Dice similarity coefficient increased up to 9% when 5-30 sparse landmark points were involved, with the segmentation accuracy improving as more border landmarks were used.

CONCLUSIONS

When a limited number of sparse border landmarks are used on the input image, the CNN performance approaches the interexpert observer difference observed in manual segmentation.

摘要

目的

通过将最小限度的用户交互纳入全卷积神经网络(CNN),研究深度学习算法在三维(3D)图像分割方面的性能提升。

方法

在 CT 图像中,使用 U-Net CNN 对前列腺进行 3D 分割。为了提高分割准确性,用一组边界标记点对 CNN 的输入图像进行注释,以指导网络对前列腺进行分割。在使用 5、10、15、20 或 30 个标记点后,使用带注释的图像再次对网络进行训练和测试。

结果

与全自动分割相比,当涉及 5-30 个稀疏标记点时,Dice 相似系数提高了高达 9%,并且随着使用更多的边界标记点,分割准确性也得到了提高。

结论

当输入图像上使用有限数量的稀疏边界标记点时,CNN 的性能接近手动分割中观察到的专家间观察者差异。

相似文献

3
Fast interactive medical image segmentation with weakly supervised deep learning method.基于弱监督深度学习方法的快速交互式医学图像分割。
Int J Comput Assist Radiol Surg. 2020 Sep;15(9):1437-1444. doi: 10.1007/s11548-020-02223-x. Epub 2020 Jul 11.

本文引用的文献

2
Fast interactive medical image segmentation with weakly supervised deep learning method.基于弱监督深度学习方法的快速交互式医学图像分割。
Int J Comput Assist Radiol Surg. 2020 Sep;15(9):1437-1444. doi: 10.1007/s11548-020-02223-x. Epub 2020 Jul 11.
5
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
6
Deep Learning in Medical Imaging: General Overview.医学成像中的深度学习:概述
Korean J Radiol. 2017 Jul-Aug;18(4):570-584. doi: 10.3348/kjr.2017.18.4.570. Epub 2017 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验