Suppr超能文献

基于深度学习的计算机断层扫描图像上前列腺的三维分割

Deep learning-based three-dimensional segmentation of the prostate on computed tomography images.

作者信息

Shahedi Maysam, Halicek Martin, Dormer James D, Schuster David M, Fei Baowei

机构信息

University of Texas at Dallas, Department of Bioengineering, Dallas, Texas, United States.

Emory University and Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, Georgia, United States.

出版信息

J Med Imaging (Bellingham). 2019 Apr;6(2):025003. doi: 10.1117/1.JMI.6.2.025003. Epub 2019 May 3.

Abstract

Segmentation of the prostate in computed tomography (CT) is used for planning and guidance of prostate treatment procedures. However, due to the low soft-tissue contrast of the images, manual delineation of the prostate on CT is a time-consuming task with high interobserver variability. We developed an automatic, three-dimensional (3-D) prostate segmentation algorithm based on a customized U-Net architecture. Our dataset contained 92 3-D abdominal CT scans from 92 patients, of which 69 images were used for training and validation and the remaining for testing the convolutional neural network model. Compared to manual segmentation by an expert radiologist, our method achieved for Dice similarity coefficient (DSC), for mean absolute distance (MAD), and for signed volume difference ( ). The average recorded interexpert difference measured on the same test dataset was 92% (DSC), 1.1 mm (MAD), and ( ). The proposed algorithm is fast, accurate, and robust for 3-D segmentation of the prostate on CT images.

摘要

计算机断层扫描(CT)中前列腺的分割用于前列腺治疗程序的规划和引导。然而,由于图像的软组织对比度低,在CT上手动勾勒前列腺是一项耗时的任务,且观察者间差异很大。我们基于定制的U-Net架构开发了一种自动三维(3-D)前列腺分割算法。我们的数据集包含来自92名患者的92次三维腹部CT扫描,其中69幅图像用于训练和验证,其余用于测试卷积神经网络模型。与专家放射科医生的手动分割相比,我们的方法在骰子相似系数(DSC)方面达到了 ,在平均绝对距离(MAD)方面达到了 ,在有符号体积差( )方面达到了 。在同一测试数据集上测量的专家间平均差异为92%(DSC)、1.1毫米(MAD)和 ( )。所提出的算法对于CT图像上前列腺的三维分割快速、准确且稳健。

相似文献

1
Deep learning-based three-dimensional segmentation of the prostate on computed tomography images.
J Med Imaging (Bellingham). 2019 Apr;6(2):025003. doi: 10.1117/1.JMI.6.2.025003. Epub 2019 May 3.
4
Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
Med Phys. 2020 Jun;47(6):2413-2426. doi: 10.1002/mp.14134. Epub 2020 Apr 8.
10
Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10133. doi: 10.1117/12.2255755. Epub 2017 Feb 24.

引用本文的文献

1
Semi-automated three-dimensional segmentation for cardiac CT images using deep learning and randomly distributed points.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12034. doi: 10.1117/12.2611594. Epub 2022 Apr 4.
2
Three-dimensional prostate CT segmentation through fine-tuning of a pre-trained neural network using no reference labeling.
Proc SPIE Int Soc Opt Eng. 2021 Feb;11598. doi: 10.1117/12.2581963. Epub 2021 Feb 15.
4
Deep Learning-Based Three-Dimensional Oral Conical Beam Computed Tomography for Diagnosis.
J Healthc Eng. 2021 Sep 21;2021:4676316. doi: 10.1155/2021/4676316. eCollection 2021.

本文引用的文献

2
Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10133. doi: 10.1117/12.2255755. Epub 2017 Feb 24.
3
Deep dense multi-path neural network for prostate segmentation in magnetic resonance imaging.
Int J Comput Assist Radiol Surg. 2018 Nov;13(11):1687-1696. doi: 10.1007/s11548-018-1841-4. Epub 2018 Aug 7.
4
A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy.
Med Image Anal. 2018 Aug;48:107-116. doi: 10.1016/j.media.2018.05.010. Epub 2018 Jun 1.
6
PSNet: prostate segmentation on MRI based on a convolutional neural network.
J Med Imaging (Bellingham). 2018 Apr;5(2):021208. doi: 10.1117/1.JMI.5.2.021208. Epub 2018 Jan 17.
7
A combined learning algorithm for prostate segmentation on 3D CT images.
Med Phys. 2017 Nov;44(11):5768-5781. doi: 10.1002/mp.12528. Epub 2017 Sep 22.
8
Cancer Statistics, 2017.
CA Cancer J Clin. 2017 Jan;67(1):7-30. doi: 10.3322/caac.21387. Epub 2017 Jan 5.
9
Combining Population and Patient-Specific Characteristics for Prostate Segmentation on 3D CT Images.
Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9784. doi: 10.1117/12.2216255. Epub 2016 Mar 21.
10
A Learning-Based CT Prostate Segmentation Method via Joint Transductive Feature Selection and Regression.
Neurocomputing (Amst). 2016 Jan 15;173(2):317-331. doi: 10.1016/j.neucom.2014.11.098.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验