Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, P. R. China.
Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China.
Adv Mater. 2022 Mar;34(12):e2107560. doi: 10.1002/adma.202107560. Epub 2022 Feb 11.
The clinical employment of cisplatin (cis-diamminedichloroplatinum(II) (CDDP)) is largely constrained due to the non-specific delivery and resultant serious systemic toxicity. Small-sized biocompatible and biodegradable hollow mesoporous organosilica (HMOS) nanoparticles show superior advantages for targeted CDDP delivery but suffer from premature CDDP leakage. Herein, the smart use of a bimetallic Zn /Cu co-doped metal-organic framework (MOF) is made to block the pores of HMOS for preventing potential leakage of CDDP and remarkably increasing the loading capacity of HMOS. Once reaching the acidic tumor microenvironment (TME), the outer MOF can decompose quickly to release CDDP for chemotherapy against cancer. Besides, the concomitant release of dopant Cu can deplete the intracellular glutathione (GSH) for increased toxicity of CDDP as well as catalyzing the decomposition of intratumoral H O into highly toxic •OH for chemodynamic therapy (CDT). Moreover, the substantially reduced GSH can also protect the yielded •OH from scavenging and thus greatly improve the •OH-based CDT effect. In addition to providing a hybrid HMOS@MOF nanocarrier, this study is also expected to establish a new form of TME-unlocked nanoformula for highly efficient tumor-specific GSH-depletion-enhanced synergistic chemotherapy/chemodynamic therapy.
顺铂(顺式-二氨二氯合铂(II)(CDDP))的临床应用受到很大限制,因为其非特异性递送和由此产生的严重全身毒性。小尺寸的生物相容性和可生物降解的中空介孔有机硅(HMOS)纳米粒子在靶向 CDDP 递送方面具有优越的优势,但存在 CDDP 早期泄漏的问题。在此,巧妙地利用双金属 Zn/Cu 共掺杂的金属有机骨架(MOF)来堵塞 HMOS 的孔,以防止潜在的 CDDP 泄漏,并显著提高 HMOS 的载药量。一旦到达酸性肿瘤微环境(TME),外 MOF 可以快速分解以释放 CDDP 进行抗癌化疗。此外,伴随释放的掺杂 Cu 可以耗尽细胞内的谷胱甘肽(GSH),从而增加 CDDP 的毒性,并催化肿瘤内 H2O 分解为用于化学动力学治疗(CDT)的高毒性•OH。此外,大大减少的 GSH 还可以保护生成的•OH 免受清除,从而大大提高基于•OH 的 CDT 效果。本研究除了提供一种混合的 HMOS@MOF 纳米载体外,还期望建立一种新的 TME 解锁纳米配方,用于高效的肿瘤特异性 GSH 耗竭增强协同化疗/化学动力学治疗。