文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于高对比度磁共振成像引导的增强型铁死亡-化学协同治疗的串联解锁级联纳米反应器

A tandem-unlocked cascade nanoreactor for high-contrast magnetic resonance imaging-guided enhanced ferroptosis-chemo synergistic therapy.

作者信息

Liu Jingwen, Huang Anfei, Luo Tianqi, Xia Liangping, Gong Ming, Lin Jiaming

机构信息

Digestive Endoscopy Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, PR China.

Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, No. 9 Jinsui Road, Guangzhou, 510623, PR China.

出版信息

Mater Today Bio. 2025 May 10;32:101852. doi: 10.1016/j.mtbio.2025.101852. eCollection 2025 Jun.


DOI:10.1016/j.mtbio.2025.101852
PMID:40487161
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12145561/
Abstract

Ferroptosis holds significant promise in cancer therapy due to its unique form of programmed cell death, marked by a strong ability to selectively target drug-resistant cells. However, therapeutic approaches leveraging ferroptosis face challenges associated with restricted efficacy, specificity, and unreliable imaging techniques for monitoring treatment progression. Herein, we design a sequential tandem-unlocked cascade nanoreactor (TPZ/HMOS/IO@GOx) for MRI-guided enhanced ferroptosis-chemo synergistic therapy. Specifically, within the tumor TME, GSH triggers the degradation of HMOS, leading to the release of GOx, IO, and TPZ from TPZ/HMOS/IO@GOx. The liberated GOx catalyzes the conversion of endogenous glucose, consuming O to generate HO and gluconic acid. The resultant increase in acidity accelerates the decomposition of IO into Fe/Fe. Subsequently, the Fenton reaction between Fe and accumulated HO generates ROS and Fe, while the reaction between Fe and HO produces ROS and Fe, establishing a cyclic catalytic effect. Fe interacts with GSH to yield Fe and GSSG, thereby intensifying oxidative stress on tumor cells. As hypoxia worsens, TPZ is activated to generate toxic radical species, further enhancing the cytotoxic effect on tumor cells and synergizing with ferroptosis treatment. The orchestrated sequence of TME-activated cascading reactions, initiated by TPZ/HMOS/IO@GOx (, tandem-unlocked cascade nanoreactor), demonstrates exceptional antitumor efficacy both and . Moreover, the TME-triggered release of IO from TPZ/HMOS/IO@GOx enables high-contrast "ON" -weighted MRI in tumor-bearing mice, providing precise guidance for the distribution of nanomedicine and tumor ferroptosis therapy.

摘要

铁死亡因其独特的程序性细胞死亡形式,在癌症治疗中具有巨大潜力,其特点是具有强大的选择性靶向耐药细胞的能力。然而,利用铁死亡的治疗方法面临着疗效受限、特异性不足以及监测治疗进展的成像技术不可靠等挑战。在此,我们设计了一种用于磁共振成像(MRI)引导的增强铁死亡 - 化疗协同治疗的顺序串联解锁级联纳米反应器(TPZ/HMOS/IO@GOx)。具体而言,在肿瘤微环境(TME)中,谷胱甘肽(GSH)触发HMOS的降解,导致GOx、IO和TPZ从TPZ/HMOS/IO@GOx中释放出来。释放的GOx催化内源性葡萄糖的转化,消耗氧气生成过氧化氢(HO)和葡萄糖酸。由此导致的酸度增加加速了IO分解为Fe²⁺/Fe³⁺。随后,Fe²⁺与积累的HO之间的芬顿反应产生活性氧(ROS)和Fe³⁺,而Fe³⁺与HO反应产生ROS和Fe²⁺,建立起循环催化作用。Fe³⁺与GSH相互作用生成Fe²⁺和谷胱甘肽二硫化物(GSSG),从而加剧对肿瘤细胞的氧化应激。随着缺氧加剧,TPZ被激活产生有毒自由基物种,进一步增强对肿瘤细胞的细胞毒性作用,并与铁死亡治疗协同作用。由TPZ/HMOS/IO@GOx(串联解锁级联纳米反应器)引发的TME激活的级联反应序列,在体内和体外均显示出卓越的抗肿瘤疗效。此外,TPZ/HMOS/IO@GOx中TME触发的IO释放能够在荷瘤小鼠中实现高对比度的“开启”T2加权MRI,为纳米药物的分布和肿瘤铁死亡治疗提供精确指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/34e0200d654e/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/900f33ed9a07/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/58805680d781/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/d843cabb6f52/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/7d8363bd789b/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/199118f53264/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/930be7d7889b/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/15d5eb98c1de/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/28536d07c3c7/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/34e0200d654e/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/900f33ed9a07/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/58805680d781/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/d843cabb6f52/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/7d8363bd789b/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/199118f53264/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/930be7d7889b/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/15d5eb98c1de/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/28536d07c3c7/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/12145561/34e0200d654e/gr7.jpg

相似文献

[1]
A tandem-unlocked cascade nanoreactor for high-contrast magnetic resonance imaging-guided enhanced ferroptosis-chemo synergistic therapy.

Mater Today Bio. 2025-5-10

[2]
A redox homeostasis disruptor based on a biodegradable nanoplatform for ultrasound (US) imaging-guided high-performance ferroptosis therapy of tumors.

Sci Technol Adv Mater. 2024-5-23

[3]
Tumor-Targeted Cascade Nanoreactor Based on Metal-Organic Frameworks for Synergistic Ferroptosis-Starvation Anticancer Therapy.

ACS Nano. 2020-9-22

[4]
MRI-Guided Tumor Therapy Based on Synergy of Ferroptosis, Immunosuppression Reversal and Disulfidptosis.

Small. 2024-7

[5]
A Glucose/Oxygen-Exhausting Nanoreactor for Starvation- and Hypoxia-Activated Sustainable and Cascade Chemo-Chemodynamic Therapy.

Small. 2020-8

[6]
Rational design of non-toxic GOx-based biocatalytic nanoreactor for multimodal synergistic therapy and tumor metastasis suppression.

Theranostics. 2021

[7]
Engineering hypoxia-specific core-shell nanotherapeutics: A sequential strategy for amplified multimodal synergistic breast cancer treatment.

J Colloid Interface Sci. 2025-10-15

[8]
A multifunctional cascade gas-nanoreactor with MnO as a gatekeeper to enhance starvation therapy and provoke antitumor immune response.

Acta Biomater. 2024-12

[9]
Multifunctional Mesoporous Silicon Nanoparticles for MRI-Based Diagnostic Imaging and Glioma Therapy.

ACS Appl Mater Interfaces. 2025-5-7

[10]
FeS embedded bioreactor collaborate with artesunate for cascade-catalytic tumor ferroptosis.

J Colloid Interface Sci. 2025-8-15

本文引用的文献

[1]
Photodynamic gel-bombs enhance tumor penetration and downstream synergistic therapies.

Signal Transduct Target Ther. 2025-3-19

[2]
A strategy of "adding fuel to the flames" enables a self-accelerating cycle of ferroptosis-cuproptosis for potent antitumor therapy.

Biomaterials. 2024-12

[3]
Bioinspired Adaptive Microdrugs Enhance the Chemotherapy of Malignant Glioma: Beyond Their Nanodrugs.

Adv Mater. 2024-8

[4]
Iron Oxide Nanoparticles Engineered Macrophage-Derived Exosomes for Targeted Pathological Angiogenesis Therapy.

ACS Nano. 2024-3-12

[5]
Ferroptosis and ferroptosis-inducing nanomedicine as a promising weapon in combination therapy of prostate cancer.

Biomater Sci. 2024-3-26

[6]
Devastating the Supply Wagons: Multifaceted Liposomes Capable of Exhausting Tumor to Death via Triple Energy Depletion.

Small. 2024-6

[7]
Three-Step Depletion Strategy of Glutathione: Tunable Metal-Organic-Framework-Engineered Nanozymes for Driving Oxidative/Nitrative Stress to Maximize Ferroptosis Therapy.

Nano Lett. 2024-2-14

[8]
7-Dehydrocholesterol dictates ferroptosis sensitivity.

Nature. 2024-2

[9]
Progress and Challenges in Tumor Ferroptosis Treatment Strategies: A Comprehensive Review of Metal Complexes and Nanomedicine.

Small. 2024-6

[10]
Metabolomics-derived biomarkers for biosafety assessment of Gd-based nanoparticle magnetic resonance imaging contrast agents.

Analyst. 2024-2-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索