Suppr超能文献

增强用于太阳能水氧化的BiVO光阳极中的电荷传输

Boosting Charge Transport in BiVO Photoanode for Solar Water Oxidation.

作者信息

Lu Yuan, Yang Yilong, Fan Xinyi, Li Yiqun, Zhou Dinghua, Cai Bo, Wang Luyang, Fan Ke, Zhang Kan

机构信息

MIIT Key Laboratory of Advanced Display Material and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.

出版信息

Adv Mater. 2022 Feb;34(8):e2108178. doi: 10.1002/adma.202108178. Epub 2022 Jan 18.

Abstract

The ability to regulate charge separation is pivotal for obtaining high efficiency of any photoelectrode used for solar fuel production. Vacancy engineering for metal oxide semiconductor photoelectrode is a major strategy but has faced a formidable challenge in bulk charge transport because of the elusive charge self-trapping site. In this work, a new deep eutectic solvent to engineer bismuth vacancies (Bi ) of BiVO photoanode is reported; the novel Bi can remarkably increase the charge diffusion coefficient by 5.8 times (from 1.82 × 10 to 1.06 × 10 cm s ), which boosts the charge transport efficiency. Through further loading CoBi cocatalyst to enhance charge transfer efficiency, the photocurrent density of BiVO photoanode with optimal Bi concentration reaches 4.5 mA cm at 1.23 V vs reversible hydrogen electrode under AM 1.5 G illumination, which is higher than that of previously reported O engineered BiVO photoanode where the BiVO photoanode is synthesized by a similar procedure. This work perfects a cation defect engineering that enables the potential capability to equate the charge transport properties in different types of semiconductor materials for solar fuel conversion.

摘要

对于用于太阳能燃料生产的任何光电极而言,调节电荷分离的能力对于实现高效率至关重要。金属氧化物半导体光电极的空位工程是一种主要策略,但由于难以捉摸的电荷自陷位点,在体电荷传输方面面临着巨大挑战。在这项工作中,报道了一种用于设计BiVO光阳极铋空位(Bi )的新型深共熔溶剂;新型Bi 可使电荷扩散系数显著提高5.8倍(从1.82×10 提高到1.06×10 cm² s⁻¹),从而提高电荷传输效率。通过进一步负载CoBi助催化剂以提高电荷转移效率,在AM 1.5 G光照下,具有最佳Bi 浓度的BiVO光阳极在相对于可逆氢电极1.23 V时的光电流密度达到4.5 mA cm²,高于先前报道的通过类似方法合成BiVO光阳极的O 工程化BiVO光阳极。这项工作完善了阳离子缺陷工程,使其有潜力使不同类型半导体材料中的电荷传输特性等同于太阳能燃料转换。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验