Suppr超能文献

通过非常规掺杂策略改善BiVO光阳极的电荷载流子动力学

Improved Charge Carrier Dynamics by Unconventional Doping Strategy for BiVO Photoanode.

作者信息

Kwon Jiseok, Choi Heechae, Choi Seunggun, Sun Jooheon, Han Hyuksu, Paik Ungyu, Choi Junghyun, Song Taeseup

机构信息

Department of Energy Engineering Hanyang University 222 Wangsimni-ro Seongdong-gu, Seoul 04763 Republic of Korea.

Department of Chemistry Xi'an Jiaotong-Liverpool University Suzhou 215123 P. R. China.

出版信息

Small Sci. 2025 May 19;5(7):2500051. doi: 10.1002/smsc.202500051. eCollection 2025 Jul.

Abstract

Bismuth vanadate (BiVO) is one of the promising photoanodes for solar fuel production, but it faces the challenge of poor charge separation due to its sluggish charge transport and short diffusion length. The ability to regulate charge separation is pivotal for obtaining high efficiency of BiVO. Herein, an unconventional acceptor doping strategy is proposed for the first time, demonstrating its effectiveness in enhancing charge carrier dynamics. Introducing the Al ions into BiVO induced a decrease in carrier concentration but an increase in the diffusion length and carrier lifetime due to the reduced chance of encountering an electron-hole pair. Furthermore, decreasing carrier concentration leads to a widened space charge layer, enabling facile charge transport and separation. The optimized 0.5 at% Al-doped BiVO (Al:BVO_0.5) exhibited ≈3.5 and 2.6 order of magnitude increase in diffusion length and in carrier lifetime, respectively, compared to pristine BiVO, achieving a photocurrent density of 3.02 mA cm at 1.23  (V versus reversible hydrogen electrode) under AM 1.5 G illumination. This research provides a new understanding of semiconductor physics and design principles for more efficient photoanodes.

摘要

钒酸铋(BiVO)是用于太阳能燃料生产的有前景的光阳极之一,但由于其缓慢的电荷传输和较短的扩散长度,它面临着电荷分离不良的挑战。调节电荷分离的能力对于获得高效的BiVO至关重要。在此,首次提出了一种非常规的受体掺杂策略,证明了其在增强载流子动力学方面的有效性。将铝离子引入BiVO中会导致载流子浓度降低,但由于遇到电子-空穴对的机会减少,扩散长度和载流子寿命会增加。此外,降低载流子浓度会导致空间电荷层变宽,从而实现电荷的轻松传输和分离。与原始BiVO相比,优化后的0.5 at%铝掺杂BiVO(Al:BVO_0.5)的扩散长度和载流子寿命分别增加了约3.5和2.6个数量级,在AM 1.5 G光照下,在1.23 V(相对于可逆氢电极)时实现了3.02 mA cm的光电流密度。这项研究为更高效的光阳极提供了半导体物理学和设计原理的新认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41d/12257881/b890f438e1ae/SMSC-5-2500051-g004.jpg

相似文献

1
Improved Charge Carrier Dynamics by Unconventional Doping Strategy for BiVO Photoanode.
Small Sci. 2025 May 19;5(7):2500051. doi: 10.1002/smsc.202500051. eCollection 2025 Jul.
2
Photothermal CuS as a Hole Transfer Layer on BiVO Photoanode for Efficient Solar Water Oxidation.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202507259. doi: 10.1002/anie.202507259. Epub 2025 Jun 23.
5
WO/NbCT MXene 2D-2D heterojunction as a high performance photoanode for photoelectrochemical water splitting.
Nanoscale Adv. 2025 Jun 10;7(14):4450-4460. doi: 10.1039/d5na00345h. eCollection 2025 Jul 10.
6
Gradient-Doped BiVO Dual Photoanodes for Highly Efficient Photoelectrochemical Water Splitting.
Chemphyschem. 2025 Jan 2;26(1):e202400692. doi: 10.1002/cphc.202400692. Epub 2024 Nov 12.
7
In Situ Formation of Oxygen Vacancies Achieving Near-Complete Charge Separation in Planar BiVO Photoanodes.
Adv Mater. 2020 Jul;32(26):e2001385. doi: 10.1002/adma.202001385. Epub 2020 May 14.
8
Plasma Treatment Induced Oxygen Vacancies and N Doping in the BiVO Photoanode toward Improved Charge Transfer and Facilitated Water Oxidation.
ACS Appl Mater Interfaces. 2025 Feb 26;17(8):12064-12073. doi: 10.1021/acsami.4c19768. Epub 2025 Feb 12.
9
Boosting Charge Transport in BiVO Photoanode for Solar Water Oxidation.
Adv Mater. 2022 Feb;34(8):e2108178. doi: 10.1002/adma.202108178. Epub 2022 Jan 18.

本文引用的文献

1
Recent Progress on Semiconductor Heterojunction-Based Photoanodes for Photoelectrochemical Water Splitting.
Small Sci. 2022 Mar 13;2(5):2100112. doi: 10.1002/smsc.202100112. eCollection 2022 May.
2
BiVO Photoanodes Enhanced with Metal Phosphide Co-Catalysts: Relevant Properties to Boost Photoanode Performance.
Small. 2024 Feb;20(7):e2306757. doi: 10.1002/smll.202306757. Epub 2023 Oct 6.
3
Synthesis of nanoporous Mo:BiVO thin film photoanodes using the ultrasonic spray technique for visible-light water splitting.
Nanoscale Adv. 2018 Nov 7;1(2):799-806. doi: 10.1039/c8na00209f. eCollection 2019 Feb 12.
4
Mobility enhancement in heavily doped semiconductors via electron cloaking.
Nat Commun. 2022 May 6;13(1):2482. doi: 10.1038/s41467-022-29958-2.
5
Emerging Surface, Bulk, and Interface Engineering Strategies on BiVO for Photoelectrochemical Water Splitting.
Small. 2022 Mar;18(10):e2105084. doi: 10.1002/smll.202105084. Epub 2021 Dec 22.
6
Boosting Charge Transport in BiVO Photoanode for Solar Water Oxidation.
Adv Mater. 2022 Feb;34(8):e2108178. doi: 10.1002/adma.202108178. Epub 2022 Jan 18.
8
Controlling Charge Carrier Trapping and Recombination in BiVO with the Oxygen Vacancy Oxidation State.
J Phys Chem Lett. 2021 Apr 15;12(14):3514-3521. doi: 10.1021/acs.jpclett.1c00713. Epub 2021 Apr 1.
10
An investigation on the role of W doping in BiVO photoanodes used for solar water splitting.
Phys Chem Chem Phys. 2018 May 16;20(19):13637-13645. doi: 10.1039/c8cp01316k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验