Zhao Hongru, Wei Xinkong, Pei Yue, Han Weihua
Guangzhou Institute of Blue Energy, Guangzhou 510555, China.
School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China.
Nanomaterials (Basel). 2024 Nov 21;14(23):1870. doi: 10.3390/nano14231870.
Bismuth Vanadate (BiVO) is a promising photoanode material due to its stability and suitable bandgap, making it effective for visible light absorption. However, its photoelectrocatalytic efficiency is often limited by the poor transport dynamics of photogenerated carriers. Recent research found that varying the atomic arrangement in crystals and Fermi levels across different crystal orientations can lead to significant differences in carrier mobility, charge recombination rates, and overall performance. In this work, we optimized the atomic arrangement by controlling the crystal growth direction to improve carrier separation efficiency using a wet chemical method. Systematic investigations revealed that the preferential [010]-oriented BiVO film exhibits the highest carrier mobility and photocurrent density. Under an applied bias of 1.21 V (vs. RHE) in a 0.5 M NaSO electrolyte, it achieved a photocurrent density of 0.2 mA cm under AM 1.5 G illumination, significantly higher than that of the [121]-oriented (0.056 mA cm) and randomly oriented films (0.11 mA cm). This study provides a deeper understanding of the role of crystal orientation in enhancing photoelectrocatalytic efficiency.
钒酸铋(BiVO)因其稳定性和合适的带隙而成为一种很有前景的光阳极材料,使其对可见光吸收有效。然而,其光电催化效率常常受到光生载流子传输动力学较差的限制。最近的研究发现,改变晶体中的原子排列以及不同晶体取向的费米能级会导致载流子迁移率、电荷复合率和整体性能出现显著差异。在这项工作中,我们使用湿化学方法通过控制晶体生长方向来优化原子排列,以提高载流子分离效率。系统研究表明,择优取向的[010] BiVO薄膜表现出最高的载流子迁移率和光电流密度。在0.5 M NaSO电解液中,施加1.21 V(相对于可逆氢电极)的偏压下,在AM 1.5 G光照下它实现了0.2 mA cm的光电流密度,明显高于[121]取向的薄膜(0.056 mA cm)和随机取向的薄膜(0.11 mA cm)。这项研究为晶体取向在提高光电催化效率中的作用提供了更深入的理解。