Suppr超能文献

基于监督局部保持典型相关分析的癫痫 EEG 分类方法。

Epilepsy EEG classification method based on supervised locality preserving canonical correlation analysis.

机构信息

Zhuoyue Honors College, Hangzhou Dianzi University, Hangzhou, China.

College of Automation, Hangzhou Dianzi University, Hangzhou, China.

出版信息

Math Biosci Eng. 2022 Jan;19(1):624-642. doi: 10.3934/mbe.2022028. Epub 2021 Nov 18.

Abstract

Existing epileptic seizure automatic detection systems are often troubled by high-dimensional electroencephalogram (EEG) features. High-dimensional features will not only bring redundant information and noise, but also reduce the response speed of the system. In order to solve this problem, supervised locality preserving canonical correlation analysis (SLPCCA), which can effectively use both sample category information and nonlinear relationships between features, is introduced. And an epileptic signal classification method based on SLPCCA is proposed. Firstly, the power spectral density and the fluctuation index of the frequency slice wavelet transform are extracted as features from the EEG fragments. Next, SLPCCA obtains the optimal projection direction by maximizing the weight correlation between the paired samples in the class and their neighbors. And the projection combination of original features in the optimal direction is the fusion feature. The fusion features are then input into LS-SVM for training and testing. This method is verified on the Bonn dataset and the CHB-MIT dataset and gets good results. On various classification tasks of Bonn data set, the proposed method achieves an average classification accuracy of 99.16%. On the binary classification task of the inter-seizure and seizure epileptic EEG of the CHB-MIT dataset, the proposed method achieves an average accuracy of 97.18%. The experimental results show that the algorithm achieves excellent results compared with several state-of-the-art methods. In addition, the parameter sensitivity of SLPCCA and the relationship between the dimension of the fusion features and the classification results are discussed. Therefore, the stability and effectiveness of the method are further verified.

摘要

现有的癫痫发作自动检测系统常常受到高维脑电图 (EEG) 特征的困扰。高维特征不仅会带来冗余信息和噪声,还会降低系统的响应速度。为了解决这个问题,引入了能够有效利用样本类别信息和特征之间非线性关系的监督局部保持典型相关分析 (SLPCCA)。并提出了一种基于 SLPCCA 的癫痫信号分类方法。首先,从 EEG 片段中提取功率谱密度和频率切片小波变换的波动指数作为特征。接下来,SLPCCA 通过最大化类内配对样本与其邻居之间的权重相关性来获得最佳投影方向。原始特征在最佳方向上的投影组合即为融合特征。然后将融合特征输入 LS-SVM 进行训练和测试。该方法在 Bonn 数据集和 CHB-MIT 数据集上进行了验证,取得了良好的效果。在 Bonn 数据集的各种分类任务中,所提出的方法平均分类准确率达到 99.16%。在 CHB-MIT 数据集的癫痫 EEG 发作间期和发作期的二分类任务中,所提出的方法平均准确率达到 97.18%。实验结果表明,该算法与几种先进的方法相比取得了优异的结果。此外,还讨论了 SLPCCA 的参数敏感性以及融合特征的维度与分类结果之间的关系。因此,进一步验证了该方法的稳定性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验