Xie Yiqi, Tritsaris Georgios A, Grånäs Oscar, Rhone Trevor David
Department of Physics, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States.
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
J Phys Chem Lett. 2021 Dec 23;12(50):12048-12054. doi: 10.1021/acs.jpclett.1c03783. Epub 2021 Dec 14.
A key issue in layered materials is the dependence of their properties on their chemical composition and crystal structure in addition to the dimensionality. For instance, atomically thin magnetic structures exhibit novel spin properties that do not exist in the bulk. We use first-principles calculations, based on density functional theory, and machine learning to study the magnetocrystalline anisotropy of a set of single-layer two-dimensional structures that are derived from changing the chemical composition of the ferromagnetic semiconductor CrGeTe. We discuss trends and identify descriptors for the magnetocrystalline anisotropy in monolayers with the chemical formula ABX. Our data-driven study aims to provide physical insights into the microscopic origins of magnetic anisotropy in two dimensions. For instance, we demonstrate that hybridization plays a key role in determining the magnetic anisotropy of the materials investigated in this study. In addition, we demonstrate that first-principles calculations can be combined with machine learning to create a high-throughput computational approach for the targeted design of quantum materials with potential applications in areas ranging from sensing to data storage.
层状材料中的一个关键问题是,除了维度之外,其性质还取决于化学成分和晶体结构。例如,原子级薄的磁性结构表现出体材料中不存在的新型自旋特性。我们基于密度泛函理论进行第一性原理计算,并利用机器学习来研究一组单层二维结构的磁晶各向异性,这些结构是通过改变铁磁半导体CrGeTe的化学成分而得到的。我们讨论了具有化学式ABX的单层磁晶各向异性的趋势并确定了描述符。我们的数据驱动研究旨在为二维磁各向异性的微观起源提供物理见解。例如,我们证明了杂化在确定本研究中所研究材料的磁各向异性方面起着关键作用。此外,我们证明了第一性原理计算可以与机器学习相结合,以创建一种高通量计算方法,用于有针对性地设计在从传感到数据存储等领域具有潜在应用的量子材料。