Department of Physics and Astronomy, Iowa State University, Ames, IA 50011.
Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, IA 50011.
Proc Natl Acad Sci U S A. 2022 Nov 22;119(47):e2204485119. doi: 10.1073/pnas.2204485119. Epub 2022 Nov 14.
Magnetic materials are essential for energy generation and information devices, and they play an important role in advanced technologies and green energy economies. Currently, the most widely used magnets contain rare earth (RE) elements. An outstanding challenge of notable scientific interest is the discovery and synthesis of novel magnetic materials without RE elements that meet the performance and cost goals for advanced electromagnetic devices. Here, we report our discovery and synthesis of an RE-free magnetic compound, FeCoB, through an efficient feedback framework by integrating machine learning (ML), an adaptive genetic algorithm, first-principles calculations, and experimental synthesis. Magnetic measurements show that FeCoB exhibits a high magnetic anisotropy ( = 1.2 MJ/m) and saturation magnetic polarization ( = 1.39 T), which is suitable for RE-free permanent-magnet applications. Our ML-guided approach presents a promising paradigm for efficient materials design and discovery and can also be applied to the search for other functional materials.
磁性材料对于能源生成和信息设备至关重要,它们在先进技术和绿色能源经济中发挥着重要作用。目前,应用最广泛的磁铁含有稀土 (RE) 元素。一个备受关注的突出挑战是发现和合成不含 RE 元素的新型磁性材料,这些材料在性能和成本方面能够满足先进电磁设备的目标。在这里,我们通过集成机器学习 (ML)、自适应遗传算法、第一性原理计算和实验合成的高效反馈框架,报告了我们对不含 RE 的磁性化合物 FeCoB 的发现和合成。磁性测量表明,FeCoB 表现出高的磁各向异性( = 1.2MJ/m)和饱和磁化强度( = 1.39T),适用于不含 RE 的永磁体应用。我们的 ML 指导方法为高效的材料设计和发现提供了有前景的范例,也可应用于其他功能材料的探索。