Yuan Miaojia, Tan Ruishan, Li Mengmeng, Jin Cui, Jing Tao, Sun Qilong
School of Science, Shandong Jianzhu University, Jinan, Shandong, 250101, China.
College of Science, Kaili University, Kaili, Guizhou, 556011, China.
Phys Chem Chem Phys. 2022 Sep 14;24(35):21470-21476. doi: 10.1039/d2cp02083a.
The demand for ultra-compact spintronic devices with lower energy consumption and higher storage density requires two-dimensional (2D) magnetic materials with tunable magnetocrystalline anisotropy (MCA) energy. Employing first-principles calculations, we have investigated the influence of W atom adsorption and biaxial strain on the magnetic properties of layered FeGeTe. We demonstrate that the adsorption mode and applied strain play a critical role in determining their MCA. The FeGeTe adsorbed with W atoms undergoes a change in spin reorientation from out-of-plane to in-plane magnetization, yielding a colossal MCA up to -13.112 erg cm. The dominant contribution to these unexpected changes mainly arises from the W atoms with emerged magnetism and large SOC. Moreover, our results reveal distinct strain-driven modulation behaviors of the MCA in different adsorption configurations. The underlying atomistic mechanism mainly involves the alteration of various W-derived 5d-orbital states under the strain effect, leading to competitive changes of the corresponding spin-orbit coupling energies between the spin-parallel and spin-flip channels. Our findings not only provide useful guidance in optimizing the MCA performance of 2D magnetic crystals but also highlight the potential of W-adsorbed FeGeTe in the applications of new-generation magnetic memory storage devices.
对具有更低能耗和更高存储密度的超紧凑型自旋电子器件的需求,需要具有可调节磁晶各向异性(MCA)能量的二维(2D)磁性材料。通过第一性原理计算,我们研究了W原子吸附和双轴应变对层状FeGeTe磁性的影响。我们证明,吸附模式和施加的应变在决定其MCA方面起着关键作用。吸附有W原子的FeGeTe经历了自旋重取向,从面外磁化变为面内磁化,产生了高达-13.112尔格/厘米的巨大MCA。这些意外变化的主要贡献主要来自具有磁性和大自旋轨道耦合(SOC)的W原子。此外,我们的结果揭示了在不同吸附构型中MCA明显的应变驱动调制行为。潜在的原子机制主要涉及应变效应下各种W衍生的5d轨道态的改变,导致自旋平行和自旋翻转通道之间相应自旋轨道耦合能量的竞争性变化。我们的发现不仅为优化二维磁性晶体的MCA性能提供了有用的指导,还突出了W吸附的FeGeTe在新一代磁存储器件应用中的潜力。