Department of Mathematics, KMUTT Fixed Point Research Laboratory, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand.
Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Thung Khru, Bangkok, Thailand.
PLoS One. 2021 Dec 14;16(12):e0260854. doi: 10.1371/journal.pone.0260854. eCollection 2021.
The present study is related to the analytical investigation of the magnetohydrodynamic flow of Ag - MgO/ water hybrid nanoliquid with slip conditions via an extending surface. The thermal radiation and Joule heating effects are incorporated within the existing hybrid nanofluid model. The system of higher-order partial differential equations is converted to the nonlinear system of ordinary differential equations by interpreting the similarity transformations. With the implementation of a strong analytical method called HAM, the solution of resulting higher-order ordinary differential equations is obtained. The results of the skin friction coefficient, Nusselt number, velocity profile, and temperature profile of the hybrid nanofluid for varying different flow parameters are attained in the form of graphs and tables. Some important outcomes showed that the Nusselt number and skin friction are increased with the enhancement in Eckert number, stretching parameter, heat generation parameter and radiation parameter for both slip and no-slip conditions. The thermal profile of the hybrid nanofluid is higher for suction effect but lower for Eckert number, stretching parameter, magnetic field, heat generation and radiation parameter. For both slip and no-slip conditions, the hybrid nanofluid velocity shows an upward trend for both the stretching and mixed convection parameters.
本研究涉及通过扩展表面对具有滑移条件的 Ag-MgO/水混合纳米流体的磁流体动力学流动进行分析研究。在所提出的混合纳米流体模型中,考虑了热辐射和焦耳加热效应。通过解释相似变换,将高阶偏微分方程组转换为非线性常微分方程组。通过应用称为 HAM 的强大分析方法,得到了所得高阶常微分方程组的解。以图表和表格的形式获得了不同流动参数下混合纳米流体的摩擦系数、努塞尔数、速度分布和温度分布的结果。一些重要的结果表明,对于滑移和无滑移条件,努塞尔数和摩擦系数随着埃克特数、拉伸参数、热生成参数和辐射参数的增加而增加。对于混合纳米流体,对于抽吸效应,热分布较高,而对于埃克特数、拉伸参数、磁场、热生成和辐射参数,热分布较低。对于滑移和无滑移条件,混合纳米流体的速度都随着拉伸和混合对流参数的增加而呈上升趋势。