Tsegaye Asfaw, Haile Eshetu, Awgichew Gurju, Dessie Hunegnaw
Bahir Dar University Department of Mathematics, Bahir Dar, Amhara, Ethiopia.
F1000Res. 2025 Mar 31;14:210. doi: 10.12688/f1000research.160734.2. eCollection 2025.
Hybrid nanofluids, consisting of two distinct nanoparticles dispersed in a base fluid, are widely used in industries requiring enhanced heat and mass transfer, such as cooling systems and heat exchangers. These fluids improve thermal conductivity and fluid dynamics, leading to better heat management and energy efficiency. This study investigates the combined effects of non-linear thermal radiation, Cattaneo-Christov heat and mass fluxes, and other factors on the three-dimensional flow, heat, and mass transfer of a Williamson hybrid nanofluid. The flow occurs over a stretching porous sheet subjected to an external magnetic field, Joule heating, chemical reactions, and heat generation.
Copper (Cu) and aluminum oxide (Al₂O₃) nanoparticles are suspended in ethylene glycol (C₂C₆O₂) to form the hybrid nanofluid. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations and solved numerically with MATLAB's bvp4c solver. The study examines various parameters, including stretching ratio, nanoparticle volume fraction, and relaxation times for concentration and thermal effects. Results are validated against existing literature.
The findings reveal that a higher stretching ratio reduces velocity, temperature, concentration profiles, and local Nusselt and Sherwood numbers, while also lowering skin friction and secondary velocity. Increasing nanoparticle volume fraction decreases velocity and temperature profiles but enhances skin friction, local Nusselt, and Sherwood numbers. Concentration profiles decline with higher concentration relaxation time, while temperature increases with longer thermal relaxation time.
In conclusion, Cu-Al₂O₃/C₂C₆O₂ hybrid nanofluids demonstrate superior heat and mass transfer capabilities compared to mono-nanofluids. The performance is significantly influenced by parameters such as nanoparticle volume fraction, relaxation times, and the stretching ratio, providing valuable insights for heat and mass transfer applications.
混合纳米流体由分散在基液中的两种不同纳米颗粒组成,广泛应用于需要强化传热传质的行业,如冷却系统和热交换器。这些流体提高了热导率和流体动力学性能,从而实现更好的热管理和能源效率。本研究考察了非线性热辐射、卡塔尼奥 - 克里斯托夫热流和质量通量以及其他因素对威廉姆森混合纳米流体三维流动、传热和传质的综合影响。流动发生在一个受到外部磁场、焦耳热、化学反应和热生成作用的拉伸多孔平板上。
将铜(Cu)和氧化铝(Al₂O₃)纳米颗粒悬浮在乙二醇(C₂C₆O₂)中形成混合纳米流体。使用相似变换将控制偏微分方程转化为常微分方程,并利用MATLAB的bvp4c求解器进行数值求解。该研究考察了各种参数,包括拉伸比、纳米颗粒体积分数以及浓度和热效应的松弛时间。结果与现有文献进行了验证。
研究结果表明,较高的拉伸比会降低速度、温度、浓度分布以及局部努塞尔数和舍伍德数,同时也会降低表面摩擦力和二次速度。增加纳米颗粒体积分数会降低速度和温度分布,但会增强表面摩擦力、局部努塞尔数和舍伍德数。浓度分布随着较高的浓度松弛时间而下降,而温度随着较长的热松弛时间而升高。
总之,与单一纳米流体相比,Cu - Al₂O₃/C₂C₆O₂混合纳米流体表现出卓越的传热传质能力。其性能受到纳米颗粒体积分数、松弛时间和拉伸比等参数的显著影响,为传热传质应用提供了有价值的见解。