Suppr超能文献

土壤酶作为土壤功能的指标:在微生物生态建模中走向更现实的一步。

Soil enzymes as indicators of soil function: A step toward greater realism in microbial ecological modeling.

机构信息

Institute for Water-Carbon Cycles and Carbon Neutrality, State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China.

Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA.

出版信息

Glob Chang Biol. 2022 Mar;28(5):1935-1950. doi: 10.1111/gcb.16036. Epub 2021 Dec 24.

Abstract

Soil carbon (C) and nitrogen (N) cycles and their complex responses to environmental changes have received increasing attention. However, large uncertainties in model predictions remain, partially due to the lack of explicit representation and parameterization of microbial processes. One great challenge is to effectively integrate rich microbial functional traits into ecosystem modeling for better predictions. Here, using soil enzymes as indicators of soil function, we developed a competitive dynamic enzyme allocation scheme and detailed enzyme-mediated soil inorganic N processes in the Microbial-ENzyme Decomposition (MEND) model. We conducted a rigorous calibration and validation of MEND with diverse soil C-N fluxes, microbial C:N ratios, and functional gene abundances from a 12-year CO  × N grassland experiment (BioCON) in Minnesota, USA. In addition to accurately simulating soil CO fluxes and multiple N variables, the model correctly predicted microbial C:N ratios and their negative response to enriched N supply. Model validation further showed that, compared to the changes in simulated enzyme concentrations and decomposition rates, the changes in simulated activities of eight C-N-associated enzymes were better explained by the measured gene abundances in responses to elevated atmospheric CO concentration. Our results demonstrated that using enzymes as indicators of soil function and validating model predictions with functional gene abundances in ecosystem modeling can provide a basis for testing hypotheses about microbially mediated biogeochemical processes in response to environmental changes. Further development and applications of the modeling framework presented here will enable microbial ecologists to address ecosystem-level questions beyond empirical observations, toward more predictive understanding, an ultimate goal of microbial ecology.

摘要

土壤碳(C)和氮(N)循环及其对环境变化的复杂响应受到了越来越多的关注。然而,模型预测仍然存在很大的不确定性,部分原因是缺乏对微生物过程的明确表示和参数化。一个巨大的挑战是有效地将丰富的微生物功能特征整合到生态系统模型中,以进行更好的预测。在这里,我们使用土壤酶作为土壤功能的指标,开发了一种竞争性动态酶分配方案,并在微生物-酶分解(MEND)模型中详细描述了酶介导的土壤无机 N 过程。我们使用来自美国明尼苏达州的为期 12 年的 CO×N 草地实验(BioCON)的多种土壤 C-N 通量、微生物 C:N 比和功能基因丰度对 MEND 进行了严格的校准和验证。除了准确模拟土壤 CO 通量和多个 N 变量外,该模型还正确预测了微生物 C:N 比及其对富氮供应的负响应。模型验证进一步表明,与模拟酶浓度和分解速率的变化相比,模拟的 8 种与 C-N 相关的酶的活性变化可以更好地用响应大气 CO 浓度升高而测量的基因丰度来解释。我们的结果表明,在生态系统建模中使用酶作为土壤功能的指标,并使用功能基因丰度验证模型预测,可以为测试关于微生物介导的生物地球化学过程对环境变化的假设提供基础。这里提出的建模框架的进一步开发和应用将使微生物生态学家能够超越经验观察来解决生态系统层面的问题,从而实现更具预测性的理解,这是微生物生态学的最终目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验