Suppr超能文献

放射性碘标记细胞外囊泡的囊外表面成分以研究生物被膜、细胞迁移和储存稳定性。

Radioiodination of extravesicular surface constituents to study the biocorona, cell trafficking and storage stability of extracellular vesicles.

机构信息

Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America.

Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America; Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America.

出版信息

Biochim Biophys Acta Gen Subj. 2022 Feb;1866(2):130069. doi: 10.1016/j.bbagen.2021.130069. Epub 2021 Dec 11.

Abstract

BACKGROUND

Extracellular vesicles (EVs) are produced by all cell types and serve as biological packets delivering a wide variety of molecules for cell-to-cell communication. However, the biology of the EV extravesicular surface domain that we have termed EV 'biocorona' remains underexplored. Upon cell secretion, EVs possess an innate biocorona containing membrane integral and peripheral constituents that is modified by acquired constituents post secretion. This distinguishes EVs from synthetic nanoparticulate biomaterials that are limited to an adsorption-based, acquired biocorona.

METHODS

The EV biocorona molecular constituents were radiolabeled with I to study biocorona constituents and its surface dynamics. As example toolset applications, I-EVs were utilized to study EV cell trafficking and the stability of the EV biocorona during storage.

RESULTS

The biocorona of EVs consisted of proteins, lipids, DNA and RNA. The cellular uptake of I-EVs was temperature dependent and internalized I-EVs were rapidly recycled by cells. When I-EVs were stored in a purified state, they exhibited time and temperature dependent biocorona shedding and proteolytic degradation that was partially inhibited in the presence of serum.

CONCLUSION

The EV biocorona is complex and dynamic. Radiolabeling of the EV biocorona enables a unique platform methodology to study the biocorona and will facilitate unlocking EV's full clinical translation potential.

GENERAL SIGNIFICANCE

The EV biocorona affects EV mediated biological processes in health and disease. Acquiring knowledge of the EV biocorona composition, dynamics, stability and structure not only informs the diagnostic and therapeutic translation of EVs but also aids in designing biomimetic nanomaterials for drug delivery.

摘要

背景

细胞外囊泡 (EVs) 由所有细胞类型产生,作为生物包,可传递各种分子,用于细胞间通讯。然而,我们称之为 EV“生物冠”的 EV 额外囊泡表面结构域的生物学仍未得到充分探索。细胞分泌后,EV 具有先天的生物冠,包含膜整合和外周成分,这些成分在分泌后被获得的成分修饰。这将 EV 与仅限于基于吸附的获得性生物冠的合成纳米颗粒生物材料区分开来。

方法

用 I 对 EV 生物冠的分子成分进行放射性标记,以研究生物冠成分及其表面动力学。作为示例工具集应用,使用 I-EVs 研究 EV 细胞迁移和 EV 生物冠在储存期间的稳定性。

结果

EV 的生物冠由蛋白质、脂质、DNA 和 RNA 组成。I-EVs 的细胞摄取依赖于温度,并且 I-EVs 被细胞快速再循环。当 I-EVs 在纯化状态下储存时,它们表现出时间和温度依赖性的生物冠脱落和蛋白水解降解,在存在血清的情况下部分抑制。

结论

EV 生物冠复杂且动态。EV 生物冠的放射性标记使研究生物冠成为一种独特的平台方法,并将促进解锁 EV 的全部临床转化潜力。

一般意义

EV 生物冠影响健康和疾病中 EV 介导的生物学过程。了解 EV 生物冠的组成、动力学、稳定性和结构不仅可以为 EV 的诊断和治疗转化提供信息,还可以帮助设计用于药物输送的仿生纳米材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验