Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
The Netherlands Organisation for Applied Scientific Research (TNO), Zeist, the Netherlands.
Cancer Epidemiol Biomarkers Prev. 2022 Apr 1;31(4):751-757. doi: 10.1158/1055-9965.EPI-21-0287.
Chemical risk assessment can benefit from integrating data across multiple evidence bases, especially in exposure-response curve (ERC) modeling when data across the exposure range are sparse.
We estimated the ERC for benzene and acute myeloid leukemia (AML), by fitting linear and spline-based Bayesian meta-regression models that included summary risk estimates from non-AML and nonhuman studies as prior information. Our complete dataset included six human AML studies, three human leukemia studies, 10 human biomarker studies, and four experimental animal studies.
A linear meta-regression model with intercept best predicted AML risks after cross-validation, both for the full dataset and AML studies only. Risk estimates in the low exposure range [<40 parts per million (ppm)-years] from this model were comparable, but more precise when the ERC was derived using all available data than when using AML data only. Allowing for between-study heterogeneity, RRs and 95% prediction intervals (95% PI) at 5 ppm-years were 1.58 (95% PI, 1.01-3.22) and 1.44 (95% PI, 0.85-3.42), respectively.
Integrating the available epidemiologic, biomarker, and animal data resulted in more precise risk estimates for benzene exposure and AML, although the large between-study heterogeneity hampers interpretation of these results. The harmonization steps required to fit the Bayesian meta-regression model involve a range of assumptions that need to be critically evaluated, as they seem crucial for successful implementation.
By describing a framework for data integration and explicitly describing the necessary data harmonization steps, we hope to enable risk assessors to better understand the advantages and assumptions underlying a data integration approach.See related commentary by Keil, p. 695.
化学风险评估可以从整合多个证据基础的数据中受益,尤其是在暴露-反应曲线(ERC)建模中,当暴露范围内的数据稀疏时。
我们通过拟合基于线性和样条的贝叶斯荟萃回归模型,将来自非 AML 和非人类研究的汇总风险估计作为先验信息,估计了苯和急性髓系白血病(AML)的 ERC。我们的完整数据集包括六项人类 AML 研究、三项人类白血病研究、十项人类生物标志物研究和四项实验动物研究。
交叉验证后,截距最佳的线性荟萃回归模型预测了 AML 风险,无论是对于整个数据集还是 AML 研究都是如此。该模型在低暴露范围内[<40 百万分率(ppm)-年]的风险估计是可比的,但当使用所有可用数据而不是仅使用 AML 数据推导出 ERC 时,风险估计更准确。考虑到研究间的异质性,在 5 ppm-年时,RR 和 95%预测区间(95%PI)分别为 1.58(95%PI,1.01-3.22)和 1.44(95%PI,0.85-3.42)。
整合现有的流行病学、生物标志物和动物数据,导致苯暴露和 AML 的风险估计更加准确,尽管研究间的大量异质性阻碍了对这些结果的解释。拟合贝叶斯荟萃回归模型所需的协调步骤涉及一系列需要严格评估的假设,因为它们对于成功实施似乎至关重要。
通过描述一个数据集成框架,并明确描述必要的数据协调步骤,我们希望使风险评估人员能够更好地理解数据集成方法的优势和假设。另见 Keil 的相关评论,第 695 页。