Suppr超能文献

核机制的基因表达调控:前体 mRNA 的剪接作为生死抉择。

Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision.

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.

出版信息

Curr Opin Genet Dev. 2021 Apr;67:67-76. doi: 10.1016/j.gde.2020.11.002. Epub 2020 Dec 5.

Abstract

Thousands of genes produce polyadenylated mRNAs that still contain one or more introns. These transcripts are known as retained intron RNAs (RI-RNAs). In the past 10 years, RI-RNAs have been linked to post-transcriptional alternative splicing in a variety of developmental contexts, but they can also be dead-end products fated for RNA decay. Here we discuss the role of intron retention in shaping gene expression programs, as well as recent evidence suggesting that the biogenesis and fate of RI-RNAs is regulated by nuclear organization. We discuss the possibility that proximity of RNA to nuclear speckles - biomolecular condensates that are highly enriched in splicing factors and other RNA binding proteins - is associated with choices ranging from efficient co-transcriptional splicing, export and stability to regulated post-transcriptional splicing and possible vulnerability to decay.

摘要

数千个基因产生多聚腺苷酸化的 mRNAs,这些 mRNAs 仍然包含一个或多个内含子。这些转录本被称为内含子保留 RNA(RI-RNAs)。在过去的 10 年中,RI-RNAs 已与各种发育背景下的转录后可变剪接相关联,但它们也可能是注定要进行 RNA 降解的无出路产物。在这里,我们讨论内含子保留在塑造基因表达程序中的作用,以及最近的证据表明,RI-RNAs 的生物发生和命运受核组织的调控。我们讨论了 RNA 与核斑之间的接近程度的可能性-生物分子凝聚物,其中富含剪接因子和其他 RNA 结合蛋白-与从高效共转录剪接、输出和稳定性到受调控的转录后剪接以及可能易受降解的选择相关联。

相似文献

1
Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision.
Curr Opin Genet Dev. 2021 Apr;67:67-76. doi: 10.1016/j.gde.2020.11.002. Epub 2020 Dec 5.
2
Balance between MAT2A intron detention and splicing is determined cotranscriptionally.
RNA. 2018 Jun;24(6):778-786. doi: 10.1261/rna.064899.117. Epub 2018 Mar 21.
3
Intron specificity in pre-mRNA splicing.
Curr Genet. 2018 Aug;64(4):777-784. doi: 10.1007/s00294-017-0802-8. Epub 2018 Jan 3.
4
Long noncoding RNAs: Re-writing dogmas of RNA processing and stability.
Biochim Biophys Acta. 2016 Jan;1859(1):128-38. doi: 10.1016/j.bbagrm.2015.06.003. Epub 2015 Jun 11.
5
Anything but Ordinary - Emerging Splicing Mechanisms in Eukaryotic Gene Regulation.
Trends Genet. 2021 Apr;37(4):355-372. doi: 10.1016/j.tig.2020.10.008. Epub 2020 Nov 15.
6
A subset of Mer1p-dependent introns requires Bud13p for splicing activation and nuclear retention.
RNA. 2006 Jul;12(7):1361-72. doi: 10.1261/rna.2276806. Epub 2006 May 31.
9
Inhibition of U4 snRNA in human cells causes the stable retention of polyadenylated pre-mRNA in the nucleus.
PLoS One. 2014 May 5;9(5):e96174. doi: 10.1371/journal.pone.0096174. eCollection 2014.
10
Canonical Poly(A) Polymerase Activity Promotes the Decay of a Wide Variety of Mammalian Nuclear RNAs.
PLoS Genet. 2015 Oct 20;11(10):e1005610. doi: 10.1371/journal.pgen.1005610. eCollection 2015 Oct.

引用本文的文献

1
Splicing to keep splicing: A feedback system for cellular homeostasis and state transition.
Clin Transl Med. 2025 Jun;15(6):e70369. doi: 10.1002/ctm2.70369.
2
The regulation and function of post-transcriptional RNA splicing.
Nat Rev Genet. 2025 Jun;26(6):378-394. doi: 10.1038/s41576-025-00836-z. Epub 2025 Apr 11.
3
Co-transcriptional splicing is delayed in the highly expressed thyroglobulin gene.
J Cell Sci. 2025 Mar 15;138(6). doi: 10.1242/jcs.263872. Epub 2025 Mar 19.
4
Alternative splicing factors and cardiac disease: more than just missplicing?
RNA. 2025 Feb 19;31(3):300-306. doi: 10.1261/rna.080332.124.
5
Emerging and re-emerging themes in co-transcriptional pre-mRNA splicing.
Mol Cell. 2024 Oct 3;84(19):3656-3666. doi: 10.1016/j.molcel.2024.08.036.
6
Alternative splicing dynamically regulates common carp embryogenesis under thermal stress.
BMC Genomics. 2024 Oct 2;25(1):918. doi: 10.1186/s12864-024-10838-6.
7
KHSRP ameliorates acute liver failure by regulating pre-mRNA splicing through its interaction with SF3B1.
Cell Death Dis. 2024 Aug 26;15(8):618. doi: 10.1038/s41419-024-06886-1.
9
Splicing regulation through biomolecular condensates and membraneless organelles.
Nat Rev Mol Cell Biol. 2024 Sep;25(9):683-700. doi: 10.1038/s41580-024-00739-7. Epub 2024 May 21.
10
CCAT1 lncRNA is chromatin-retained and post-transcriptionally spliced.
Histochem Cell Biol. 2024 Jul;162(1-2):91-107. doi: 10.1007/s00418-024-02294-w. Epub 2024 May 19.

本文引用的文献

1
SON and SRRM2 are essential for nuclear speckle formation.
Elife. 2020 Oct 23;9:e60579. doi: 10.7554/eLife.60579.
2
Out or decay: fate determination of nuclear RNAs.
Essays Biochem. 2020 Dec 7;64(6):895-905. doi: 10.1042/EBC20200005.
3
Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin.
Cell. 2020 Sep 17;182(6):1641-1659.e26. doi: 10.1016/j.cell.2020.07.032. Epub 2020 Aug 20.
4
Biomolecular Condensates in the Nucleus.
Trends Biochem Sci. 2020 Nov;45(11):961-977. doi: 10.1016/j.tibs.2020.06.007. Epub 2020 Jul 17.
6
Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants.
Nat Plants. 2020 Jul;6(7):780-788. doi: 10.1038/s41477-020-0688-1. Epub 2020 Jun 15.
7
Pre-mRNA Splicing in the Nuclear Landscape.
Cold Spring Harb Symp Quant Biol. 2019;84:11-20. doi: 10.1101/sqb.2019.84.040402. Epub 2020 Jun 3.
8
Splicing Kinetics and Coordination Revealed by Direct Nascent RNA Sequencing through Nanopores.
Mol Cell. 2020 Mar 5;77(5):985-998.e8. doi: 10.1016/j.molcel.2019.11.017. Epub 2019 Dec 12.
9
Gene expression amplification by nuclear speckle association.
J Cell Biol. 2020 Jan 6;219(1). doi: 10.1083/jcb.201904046.
10
The changing paradigm of intron retention: regulation, ramifications and recipes.
Nucleic Acids Res. 2019 Dec 16;47(22):11497-11513. doi: 10.1093/nar/gkz1068.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验