Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA.
Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA.
Nucleic Acids Res. 2022 Jan 25;50(2):1017-1032. doi: 10.1093/nar/gkab1226.
The ongoing COVID-19 pandemic highlights the necessity for a more fundamental understanding of the coronavirus life cycle. The causative agent of the disease, SARS-CoV-2, is being studied extensively from a structural standpoint in order to gain insight into key molecular mechanisms required for its survival. Contained within the untranslated regions of the SARS-CoV-2 genome are various conserved stem-loop elements that are believed to function in RNA replication, viral protein translation, and discontinuous transcription. While the majority of these regions are variable in sequence, a 41-nucleotide s2m element within the genome 3' untranslated region is highly conserved among coronaviruses and three other viral families. In this study, we demonstrate that the SARS-CoV-2 s2m element dimerizes by forming an intermediate homodimeric kissing complex structure that is subsequently converted to a thermodynamically stable duplex conformation. This process is aided by the viral nucleocapsid protein, potentially indicating a role in mediating genome dimerization. Furthermore, we demonstrate that the s2m element interacts with multiple copies of host cellular microRNA (miRNA) 1307-3p. Taken together, our results highlight the potential significance of the dimer structures formed by the s2m element in key biological processes and implicate the motif as a possible therapeutic drug target for COVID-19 and other coronavirus-related diseases.
持续的 COVID-19 大流行凸显了更深入了解冠状病毒生命周期的必要性。该疾病的病原体 SARS-CoV-2 正在从结构角度进行广泛研究,以便深入了解其生存所需的关键分子机制。SARS-CoV-2 基因组的非翻译区包含各种保守的茎环元件,据信这些元件在 RNA 复制、病毒蛋白翻译和不连续转录中发挥作用。虽然这些区域的大多数序列都具有变异性,但基因组 3'非翻译区中的 41 个核苷酸 s2m 元件在冠状病毒和其他三个病毒家族中高度保守。在这项研究中,我们证明了 SARS-CoV-2 s2m 元件通过形成中间体同源二聚体亲吻复合物结构来二聚化,然后转化为热力学稳定的双链构象。核衣壳蛋白有助于该过程,这可能表明其在介导基因组二聚化中发挥作用。此外,我们证明 s2m 元件与多个宿主细胞 microRNA (miRNA) 1307-3p 相互作用。总之,我们的结果强调了 s2m 元件形成的二聚体结构在关键生物学过程中的潜在重要性,并暗示该基序可能是 COVID-19 和其他冠状病毒相关疾病的潜在治疗药物靶点。