Suppr超能文献

一种受骆驼鼻子启发的具有高度耐用性的神经形态湿度传感器,具有水源定位能力。

A Camel Nose-Inspired Highly Durable Neuromorphic Humidity Sensor with Water Source Locating Capability.

机构信息

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou 350002, Fujian, P. R. China.

Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, Fujian, P. R. China.

出版信息

ACS Nano. 2022 Jan 25;16(1):1511-1522. doi: 10.1021/acsnano.1c10004. Epub 2021 Dec 15.

Abstract

Numerous emerging applications in modern society require humidity sensors that are not only sensitive and specific but also durable and intelligent. However, conventional humidity sensors do not have all of these simultaneously because they require very different or even contradictory design principles. Here, inspired by camel noses, we develop a porous zwitterionic capacitive humidity sensor. Relying on the synergistic effect of a porous structure and good chemical and thermal stabilities of hygroscopic zwitterions, this sensor simultaneously exhibits high sensitivity, discriminability, excellent durability, and, in particular, the highest respond speed among reported capacitive humidity sensors, with demonstrated applications in the fast discrimination between fresh, stale, and dry leaves, high-resolution touchless human-machine interactive input devices, and the monitoring humidity level of a hot industrial exhaust. More importantly, this sensor exhibits typical synapse behaviors such as paired-pulse facilitation due to the strong binding interactions between water and zwitterions. This leads to learning and forgetting features with a tunable memory, thus giving the sensor artificial intelligence and enabling the location of water sources. This work offers a general design principle expected to be applied to develop other high-performance biochemical sensors and the next-generation intelligent sensors with much broader applications.

摘要

在现代社会中,许多新兴应用需要湿度传感器,这些传感器不仅要灵敏、特异,还要耐用、智能。然而,传统的湿度传感器并不具备所有这些特性,因为它们需要非常不同甚至相互矛盾的设计原则。在这里,受骆驼鼻子的启发,我们开发了一种多孔两性离子电容式湿度传感器。该传感器依靠多孔结构和吸湿性两性离子良好的化学和热稳定性的协同作用,同时表现出高灵敏度、可区分性、优异的耐用性,特别是在已报道的电容式湿度传感器中具有最快的响应速度,在快速区分新鲜、陈旧和干燥的叶片、高分辨率的非接触人机交互输入设备以及监测热工业废气的湿度水平方面具有实际应用。更重要的是,由于水和两性离子之间的强结合相互作用,该传感器表现出典型的突触行为,如成对脉冲易化。这导致了具有可调记忆的学习和遗忘功能,从而使传感器具有人工智能,并能够定位水源。这项工作提供了一个通用的设计原则,有望应用于开发其他高性能生化传感器和具有更广泛应用的下一代智能传感器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验