Suppr超能文献

文化变迁的机器学习模型:亲社会性、政治态度和新教工作伦理的作用。

A machine learning model of cultural change: Role of prosociality, political attitudes, and Protestant work ethic.

机构信息

Division of Strategy, International Business, and Entrepreneurship, Nanyang Business School, Nanyang Technological University.

Division of Leadership, Management, and Organisation, Nanyang Business School, Nanyang Technological University.

出版信息

Am Psychol. 2021 Sep;76(6):997-1012. doi: 10.1037/amp0000868.

Abstract

What attitudes, values, and beliefs serve as key markers of cultural change? To answer this question, we examined 221,485 respondents from the World Values Survey, a multiwave cross-country survey of people's attitudes, values, and beliefs. We trained a machine learning model to classify respondents into seven waves (i.e., periods). Once trained, the machine learning model identified a separate group of 24,611 respondents' wave with a balanced accuracy of 77%. We then queried the model to identify the attitudes, values, and beliefs that contributed the most to its classification decisions, and therefore, served as markers of cultural change. These included religiosity, social attitudes, political attitudes, independence, life satisfaction, Protestant work ethic, and prosociality. Although past research in cultural change has discussed decreasing religiosity and increasing liberalism and independence, it has not yet identified Protestant work ethic, political orientation, and prosociality as values relevant to cultural change. Thus, the current research points to new directions for future research on cultural change that might not be evident from either a deductive or an inductive approach. This research illustrates that the abductive approach of machine learning, which focuses on the most likely explanations for an outcome, can help generate novel insights. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

摘要

哪些态度、价值观和信仰是文化变革的关键标志?为了回答这个问题,我们研究了来自世界价值观调查的 221485 名受访者,这是一项多波跨国调查,调查了人们的态度、价值观和信仰。我们训练了一个机器学习模型,将受访者分为七波(即时期)。一旦经过训练,机器学习模型就可以以 77%的平衡准确率识别出另一组 24611 名受访者的波。然后,我们查询模型,以确定对其分类决策贡献最大的态度、价值观和信仰,因此,它们是文化变革的标志。这些包括宗教信仰、社会态度、政治态度、独立性、生活满意度、新教工作伦理和亲社会。尽管过去关于文化变革的研究讨论了宗教信仰的减少和自由主义和独立性的增加,但它尚未将新教工作伦理、政治取向和亲社会视为与文化变革相关的价值观。因此,目前的研究为未来关于文化变革的研究指明了新的方向,这些方向可能不是从演绎或归纳方法中明显的。这项研究表明,机器学习的溯因方法,侧重于对结果最可能的解释,可以帮助产生新的见解。(PsycInfo 数据库记录(c)2021 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验