Guo Bo, Pomicter Anthony D, Li Francis, Bhatt Sudhir, Chen Chen, Li Wen, Qi Miao, Huang Chen, Deininger Michael W, Kong Michael G, Chen Hai-Lan
Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508.
Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China.
Proc Natl Acad Sci U S A. 2021 Dec 21;118(51). doi: 10.1073/pnas.2107220118.
Therapy resistance is responsible for most cancer-related death and is mediated by the unique ability of cancer cells to leverage metabolic conditions, signaling molecules, redox status, and other pathways for their survival. Interestingly, many cancer survival pathways are susceptible to disturbances in cellular reactive oxygen species (ROS) and may therefore be disrupted by exogenous ROS. Here, we explore whether trident cold atmospheric plasma (Tri-CAP), a gas discharge with exceptionally low-level ROS, could inhibit multiple cancer survival pathways together in a murine cell line model of therapy-resistant chronic myeloid leukemia (CML). We show that Tri-CAP simultaneously disrupts three cancer survival pathways of redox deregulation, glycolysis, and proliferative AKT/mTOR/HIF-1α signaling in this cancer model. Significantly, Tri-CAP blockade induces a very high rate of apoptotic death in CML cell lines and in primary CD34 hematopoietic stem and progenitor cells from CML patients, both harboring the therapy-resistant T315I mutation. In contrast, nonmalignant controls are minimally affected by Tri-CAP, suggesting it selectively targets resistant cancer cells. We further demonstrate that Tri-CAP elicits similar lethality in human melanoma, breast cancer, and CML cells with disparate, resistant mechanisms and that it both reduces tumor formation in two mouse models and improves survival of tumor-bearing mice. For use in patients, administration of Tri-CAP may be extracorporeal for hematopoietic stem cell transplantation therapy, transdermal, or through its activated solution for infusion therapy. Collectively, our results suggest that Tri-CAP represents a potent strategy for disrupting cancer survival pathways and overcoming therapy resistance in a variety of malignancies.
治疗耐药是导致大多数癌症相关死亡的原因,其介导机制是癌细胞具有独特能力,能够利用代谢条件、信号分子、氧化还原状态及其他途径来实现存活。有趣的是,许多癌症存活途径易受细胞活性氧(ROS)干扰,因此可能会被外源性ROS破坏。在此,我们探究了三叉戟低温大气等离子体(Tri-CAP),一种具有极低水平ROS的气体放电形式,是否能在耐治疗慢性髓系白血病(CML)的小鼠细胞系模型中共同抑制多种癌症存活途径。我们发现,在该癌症模型中,Tri-CAP同时破坏了氧化还原失调、糖酵解以及增殖性AKT/mTOR/HIF-1α信号这三条癌症存活途径。值得注意的是,Tri-CAP阻断在CML细胞系以及来自CML患者的原发性CD34造血干细胞和祖细胞中均诱导了非常高的凋亡死亡率,这些细胞均携带耐治疗的T315I突变。相比之下,非恶性对照受Tri-CAP的影响极小,这表明它选择性地靶向耐药癌细胞。我们进一步证明,Tri-CAP在具有不同耐药机制的人类黑色素瘤、乳腺癌和CML细胞中引发了类似的致死性,并且它既能减少两种小鼠模型中的肿瘤形成,又能提高荷瘤小鼠的存活率。对于患者应用而言,Tri-CAP的给药方式可以是用于造血干细胞移植治疗的体外方式、经皮方式,或者通过其活化溶液进行输注治疗。总体而言,我们的结果表明,Tri-CAP是一种有效的策略,可用于破坏癌症存活途径并克服多种恶性肿瘤中的治疗耐药性。