Unit of Neurology, Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
J Physiol. 2022 Mar;600(6):1497-1514. doi: 10.1113/JP282259. Epub 2022 Jan 12.
The integration of sensory inputs in the motor cortex is crucial for dexterous movement. We recently demonstrated that a closed-loop control based on the feedback provided through intraneural multichannel electrodes implanted in the median and ulnar nerves of a participant with upper limb amputation improved manipulation skills and increased prosthesis embodiment. Here we assessed, in the same participant, whether and how selective intraneural sensory stimulation also elicits a measurable cortical activation and affects sensorimotor cortical circuits. After estimating the activation of the primary somatosensory cortex evoked by intraneural stimulation, sensorimotor integration was investigated by testing the inhibition of primary motor cortex (M1) output to transcranial magnetic stimulation, after both intraneural and perineural stimulation. Selective sensory intraneural stimulation evoked a low-amplitude, 16 ms-latency, parietal response in the same area of the earliest component evoked by whole-nerve stimulation, compatible with fast-conducting afferent fibre activation. For the first time, we show that the same intraneural stimulation was also capable of decreasing M1 output, at the same time range of the short-latency afferent inhibition effect of whole-nerve superficial stimulation. The inhibition generated by the stimulation of channels activating only sensory fibres was stronger than that due to intraneural or perineural stimulation of channels activating mixed fibres. We demonstrate in a human subject that the cortical sensorimotor integration inhibiting M1 output previously described after the experimental whole-nerve stimulation is present also with a more ecological selective sensory fibre stimulation. KEY POINTS: Cortical integration of sensory inputs is crucial for dexterous movement. Short-latency somatosensory afferent inhibition of motor cortical output is typically produced by peripheral whole-nerve stimulation. We exploited intraneural multichannel electrodes used to provide sensory feedback for prosthesis control to assess whether and how selective intraneural sensory stimulation affects sensorimotor cortical circuits in humans. Activation of the primary somatosensory cortex (S1) was explored by recording scalp somatosensory evoked potentials. Sensorimotor integration was tested by measuring the inhibitory effect of the afferent stimulation on the output of the primary motor cortex (M1) generated by transcranial magnetic stimulation. We demonstrate in humans that selective intraneural sensory stimulation elicits a measurable activation of S1 and that it inhibits the output of M1 at the same time range of whole-nerve superficial stimulation.
感觉输入在运动皮层中的整合对于灵巧运动至关重要。我们最近证明,基于通过植入上肢截肢参与者的正中神经和尺神经中的多通道神经内电极提供的反馈的闭环控制可以改善操作技能并增加假体体现。在这里,我们评估了同一位参与者,选择性的神经内感觉刺激是否以及如何引起可测量的皮层激活并影响感觉运动皮层回路。在估计通过神经内刺激引起的初级体感皮层的激活后,通过测试经颅磁刺激对初级运动皮层(M1)输出的抑制来研究感觉运动整合,在神经内和神经周刺激后进行测试。选择性的感觉神经内刺激引起了一个低幅度的、16 毫秒潜伏期的、顶叶反应,与全神经刺激引起的最早成分的同一区域相同,与快速传导传入纤维的激活兼容。我们首次表明,相同的神经内刺激也能够降低 M1 的输出,同时也处于全神经浅部刺激的短潜伏期传入抑制效应的时间范围内。仅激活感觉纤维的通道刺激产生的抑制作用强于激活混合纤维的通道的神经内或神经周刺激产生的抑制作用。我们在人类受试者中证明,以前在实验性全神经刺激后描述的抑制 M1 输出的皮层感觉运动整合也存在于更生态的选择性感觉纤维刺激中。 关键点:感觉输入的皮层整合对于灵巧运动至关重要。运动皮质输出的短潜伏期体感传入抑制通常由外周全神经刺激产生。我们利用用于提供假体控制的神经内多通道电极来评估选择性神经内感觉刺激是否以及如何影响人类的感觉运动皮层回路,这些电极之前用于提供感觉反馈。通过记录头皮体感诱发电位来探索初级体感皮层(S1)的激活。通过测量传入刺激对经颅磁刺激产生的初级运动皮层(M1)输出的抑制作用来测试感觉运动整合。我们在人类中证明,选择性的神经内感觉刺激会引起可测量的 S1 激活,并且它在与全神经浅部刺激相同的时间范围内抑制 M1 的输出。