Suppr超能文献

当前癌症研究面临的复杂性:我们是否走错了路?

Complexity against current cancer research: Are we on the wrong track?

作者信息

Kasikci Yasenya, Gronemeyer Hinrich

机构信息

Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.

Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.

出版信息

Int J Cancer. 2022 May 15;150(10):1569-1578. doi: 10.1002/ijc.33912. Epub 2022 Jan 11.

Abstract

Cancer genetics has led to major discoveries, including protooncogene and tumor-suppressor concepts, and cancer genomics generated concepts like driver and passenger genes, revealed tumor heterogeneity and clonal evolution. Reconstructing trajectories of tumorigenesis using spatial and single-cell genomics is possible. Patient stratification and prognostic parameters have been improved. Yet, despite these advances, successful translation into targeted therapies has been scarce and mostly limited to kinase inhibitors. Here, we argue that current cancer research may be on the wrong track, by considering cancer more as a "monogenic" disease, trying to extract common information from thousands of patients, while not properly considering complexity and individual diversity. We suggest to empower a systems cancer approach which reconstructs the information network that has been altered by the tumorigenic events, to analyze hierarchies and predict (druggable) key nodes that could interfere with/block the aberrant information transfer. We also argue that the interindividual variability between patients of similar cohorts is too high to extract common polygenic network information from large numbers of patients and argue in favor of an individualized approach. The analysis we propose would require a structured multinational and multidisciplinary effort, in which clinicians, and cancer, developmental, cell and computational biologists together with mathematicians and informaticians develop dynamic regulatory networks which integrate the entire information transfer in and between cells and organs in (patho)physiological conditions, revealing hierarchies and available drugs to interfere with key regulators. Based on this blueprint, the altered information transfer in individual cancers could be modeled and possible targeted (combo)therapies proposed.

摘要

癌症遗传学已带来了重大发现,包括原癌基因和肿瘤抑制基因的概念,而癌症基因组学则产生了如驱动基因和乘客基因等概念,揭示了肿瘤异质性和克隆进化。利用空间和单细胞基因组学重建肿瘤发生轨迹成为可能。患者分层和预后参数也得到了改善。然而,尽管取得了这些进展,但成功转化为靶向治疗的情况却很罕见,且大多局限于激酶抑制剂。在此,我们认为当前的癌症研究可能走错了方向,因为它更多地将癌症视为一种“单基因”疾病,试图从数千名患者中提取共同信息,却没有充分考虑其复杂性和个体多样性。我们建议采用一种系统癌症研究方法,重建因致癌事件而改变的信息网络,分析层级结构并预测可能干扰/阻断异常信息传递的(可成药的)关键节点。我们还认为,相似队列患者之间的个体差异过大,无法从大量患者中提取共同的多基因网络信息,因此主张采用个体化方法。我们提出的分析需要跨国界、多学科的结构化努力,临床医生、癌症生物学家、发育生物学家、细胞生物学家、计算生物学家以及数学家和信息学家共同构建动态调控网络,整合(病理)生理条件下细胞与器官内部及之间的全部信息传递,揭示层级结构以及可用于干扰关键调节因子的药物。基于此蓝图,可以对个体癌症中改变的信息传递进行建模,并提出可能的靶向(联合)治疗方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验