Suppr超能文献

GraphOmics:一个用于探索和整合多组学数据的交互式平台。

GraphOmics: an interactive platform to explore and integrate multi-omics data.

机构信息

Glasgow Polyomics, University of Glasgow, Glasgow, G61 1BD, UK.

出版信息

BMC Bioinformatics. 2021 Dec 18;22(1):603. doi: 10.1186/s12859-021-04500-1.

Abstract

BACKGROUND

An increasing number of studies now produce multiple omics measurements that require using sophisticated computational methods for analysis. While each omics data can be examined separately, jointly integrating multiple omics data allows for deeper understanding and insights to be gained from the study. In particular, data integration can be performed horizontally, where biological entities from multiple omics measurements are mapped to common reactions and pathways. However, data integration remains a challenge due to the complexity of the data and the difficulty in interpreting analysis results.

RESULTS

Here we present GraphOmics, a user-friendly platform to explore and integrate multiple omics datasets and support hypothesis generation. Users can upload transcriptomics, proteomics and metabolomics data to GraphOmics. Relevant entities are connected based on their biochemical relationships, and mapped to reactions and pathways from Reactome. From the Data Browser in GraphOmics, mapped entities and pathways can be ranked, sorted and filtered according to their statistical significance (p values) and fold changes. Context-sensitive panels provide information on the currently selected entities, while interactive heatmaps and clustering functionalities are also available. As a case study, we demonstrated how GraphOmics was used to interactively explore multi-omics data and support hypothesis generation using two complex datasets from existing Zebrafish regeneration and Covid-19 human studies.

CONCLUSIONS

GraphOmics is fully open-sourced and freely accessible from https://graphomics.glasgowcompbio.org/ . It can be used to integrate multiple omics data horizontally by mapping entities across omics to reactions and pathways. Our demonstration showed that by using interactive explorations from GraphOmics, interesting insights and biological hypotheses could be rapidly revealed.

摘要

背景

现在越来越多的研究产生了多个组学测量值,需要使用复杂的计算方法进行分析。虽然可以分别检查每个组学数据,但联合整合多个组学数据可以从研究中获得更深入的理解和见解。特别是,数据集成可以水平进行,其中来自多个组学测量的生物实体被映射到共同的反应和途径。然而,由于数据的复杂性以及解释分析结果的困难,数据集成仍然是一个挑战。

结果

在这里,我们展示了 GraphOmics,这是一个用户友好的平台,用于探索和整合多个组学数据集并支持假设生成。用户可以将转录组学、蛋白质组学和代谢组学数据上传到 GraphOmics。相关实体基于它们的生化关系连接,并映射到来自 Reactome 的反应和途径。从 GraphOmics 的“Data Browser”中,可以根据其统计显著性(p 值)和倍数变化对映射实体和途径进行排名、排序和筛选。上下文敏感面板提供有关当前所选实体的信息,同时还提供交互式热图和聚类功能。作为案例研究,我们展示了如何使用 GraphOmics 来交互式探索多组学数据并使用来自现有斑马鱼再生和新冠病毒人类研究的两个复杂数据集来支持假设生成。

结论

GraphOmics 是完全开源的,可以从 https://graphomics.glasgowcompbio.org/ 免费访问。它可以通过将实体跨组学映射到反应和途径来水平整合多个组学数据。我们的演示表明,通过使用 GraphOmics 的交互式探索,可以快速揭示有趣的见解和生物学假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b009/8684259/7bfd7632882e/12859_2021_4500_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验