Department of Physics, Virginia Tech, Blacksburg.
Department of Cell & Molecular Physiology, Loyola University Chicago, Chicago.
Biophys J. 2022 Jan 18;121(2):309-318. doi: 10.1016/j.bpj.2021.12.013. Epub 2021 Dec 16.
Synapsed cells can communicate using exocytosed nucleotides like adenosine triphosphate (ATP). Ectonucleotidases localized to synaptic junctions degrade nucleotides into metabolites like adenosine monophosphate (AMP) or adenosine. Oftentimes nucleotide degradation occurs in a sequential manner, of which ATP degradation by CD39 and CD73 is a representative example. Here, CD39 first converts ATP and adenosine diphosphate (ADP) into AMP, after which AMP is dephosphorylated into adenosine by CD73. Hence, the concerted activity of CD39 and CD73 can help shape cellular responses to extracellular ATP. In a previous study, we demonstrated that coupled CD39 and CD73 activity within synapse-like junctions is strongly controlled by the enzymes' co-localization, their surface charge densities, and the electrostatic potential of the surrounding cell membranes. In this study, we demonstrate that crowders within synaptic junctions, which can include globular proteins like cytokines and membrane-bound proteins, impact coupled CD39 and CD73 ectonucleotidase activity and, in turn, the availability of intrasynapse ATP. Specifically, we developed a spatially explicit, reaction-diffusion model for the coupled conversion of ATP → AMP and AMP → adenosine in a model synaptic junction with crowders that is solved via the finite element method. Our modeling results suggest that the association rate for ATP to CD39 is strongly influenced by the density of intrasynaptic protein crowders, as increasing crowder density generally suppressed ATP association kinetics. Much of this suppression can be rationalized based on a loss of configurational entropy. The surface charges of crowders can further influence the association rate, with the surprising result that favorable crowder-nucleotide electrostatic interactions can yield CD39 association rates that are faster than crowder-free configurations. However, attractive crowder-nucleotide interactions decrease the rate and efficiency of adenosine production, which in turn increases the availability of ATP and AMP within the synapse relative to crowder-free configurations. These findings highlight how CD39 and CD73 ectonucleotidase activity, electrostatics, and crowding within synapses influence the availability of nucleotides for intercellular communication.
突触细胞可以通过外排核苷酸(如三磷酸腺苷 (ATP))进行通信。定位于突触连接处的核苷酸酶将核苷酸降解为代谢物,如单磷酸腺苷 (AMP) 或腺苷。通常,核苷酸的降解是按顺序进行的,其中 CD39 和 CD73 降解 ATP 就是一个代表性的例子。在此过程中,CD39 首先将 ATP 和二磷酸腺苷 (ADP) 转化为 AMP,然后 AMP 被 CD73 去磷酸化为腺苷。因此,CD39 和 CD73 的协同活性有助于塑造细胞对外周 ATP 的反应。在之前的研究中,我们证明了突触样连接中偶联的 CD39 和 CD73 活性受到酶的共定位、表面电荷密度以及周围细胞膜的静电势的强烈控制。在这项研究中,我们证明了突触连接处的拥挤物(包括细胞因子等球形蛋白和膜结合蛋白)会影响偶联的 CD39 和 CD73 核苷酸酶活性,从而影响突触内 ATP 的可用性。具体来说,我们开发了一个空间显式的、基于反应扩散的模型,用于在具有拥挤物的模型突触连接中偶联转化 ATP→AMP 和 AMP→腺苷,该模型通过有限元方法求解。我们的建模结果表明,ATP 与 CD39 的结合速率受到突触内蛋白拥挤物密度的强烈影响,因为增加拥挤物密度通常会抑制 ATP 结合动力学。这种抑制在很大程度上可以用构象熵的损失来解释。拥挤物的表面电荷还可以进一步影响结合速率,出乎意料的是,有利的拥挤物-核苷酸静电相互作用可以产生比无拥挤物构型更快的 CD39 结合速率。然而,吸引性的拥挤物-核苷酸相互作用会降低腺苷生成的速率和效率,从而增加突触内相对于无拥挤物构型的 ATP 和 AMP 的可用性。这些发现强调了 CD39 和 CD73 核苷酸酶活性、静电和突触内拥挤如何影响核苷酸用于细胞间通信的可用性。