Suppr超能文献

外核苷酸酶的共定位和限制调节细胞外腺苷核苷酸分布。

Co-localization and confinement of ecto-nucleotidases modulate extracellular adenosine nucleotide distributions.

机构信息

Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky, United States of America.

Paul Laurence Dunbar High School, Lexington, Kentucky, United States of America.

出版信息

PLoS Comput Biol. 2020 Jun 25;16(6):e1007903. doi: 10.1371/journal.pcbi.1007903. eCollection 2020 Jun.

Abstract

Nucleotides comprise small molecules that perform critical signaling roles in biological systems. Adenosine-based nucleotides, including adenosine tri-, di-, and mono-phosphate, are controlled through their rapid degradation by diphosphohydrolases and ecto-nucleotidases (NDAs). The interplay between nucleotide signaling and degradation is especially important in synapses formed between cells, which create signaling 'nanodomains'. Within these 'nanodomains', charged nucleotides interact with densely-packed membranes and biomolecules. While the contributions of electrostatic and steric interactions within such nanodomains are known to shape diffusion-limited reaction rates, less is understood about how these factors control the kinetics of nucleotidase activity. To quantify these factors, we utilized reaction-diffusion numerical simulations of 1) adenosine triphosphate (ATP) hydrolysis into adenosine monophosphate (AMP) and 2) AMP into adenosine (Ado) via two representative nucleotidases, CD39 and CD73. We evaluate these sequentially-coupled reactions in nanodomain geometries representative of extracellular synapses, within which we localize the nucleotidases. With this model, we find that 1) nucleotidase confinement reduces reaction rates relative to an open (bulk) system, 2) the rates of AMP and ADO formation are accelerated by restricting the diffusion of substrates away from the enzymes, and 3) nucleotidase co-localization and the presence of complementary (positive) charges to ATP enhance reaction rates, though the impact of these contributions on nucleotide pools depends on the degree to which the membrane competes for substrates. As a result, these contributions integratively control the relative concentrations and distributions of ATP and its metabolites within the junctional space. Altogether, our studies suggest that CD39 and CD73 nucleotidase activity within junctional spaces can exploit their confinement and favorable electrostatic interactions to finely control nucleotide signaling.

摘要

核苷酸由小分子组成,在生物系统中发挥关键信号作用。基于腺苷的核苷酸,包括三磷酸腺苷、二磷酸腺苷和一磷酸腺苷,通过二磷酸水解酶和外核苷酸酶(NDAs)的快速降解来控制。核苷酸信号和降解之间的相互作用在细胞之间形成的突触中尤为重要,这些突触形成信号“纳米域”。在这些“纳米域”内,带电荷的核苷酸与密集堆积的膜和生物分子相互作用。虽然纳米域内的静电和空间相互作用对扩散限制反应速率的贡献是已知的,但对于这些因素如何控制核苷酸酶活性的动力学了解较少。为了量化这些因素,我们利用 1)三磷酸腺苷(ATP)水解为一磷酸腺苷(AMP)和 2)AMP 水解为腺苷(Ado)的反应-扩散数值模拟,使用两种代表性的核苷酸酶,CD39 和 CD73。我们在代表细胞外突触的纳米域几何形状中评估这些顺序偶联反应,在这些纳米域中定位核苷酸酶。通过该模型,我们发现 1)与开放(体相)系统相比,核苷酸酶的限制会降低反应速率,2)通过限制底物远离酶的扩散,加速 AMP 和 ADO 的形成速率,3)核苷酸酶共定位和与 ATP 互补(正)电荷的存在会加速反应速率,尽管这些贡献对核苷酸池的影响取决于膜对底物的竞争程度。因此,这些贡献综合控制了连接间隙内 ATP 及其代谢物的相对浓度和分布。总的来说,我们的研究表明,CD39 和 CD73 核苷酸酶在连接间隙内的活性可以利用其限制和有利的静电相互作用来精细控制核苷酸信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验