Suppr超能文献

基于深度学习的锥形束 CT 图像合成 CT 技术。

Synthetic CT generation from CBCT images via deep learning.

机构信息

Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.

出版信息

Med Phys. 2020 Mar;47(3):1115-1125. doi: 10.1002/mp.13978. Epub 2020 Jan 13.

Abstract

PURPOSE

Cone-beam computed tomography (CBCT) scanning is used daily or weekly (i.e., on-treatment CBCT) for accurate patient setup in image-guided radiotherapy. However, inaccuracy of CT numbers prevents CBCT from performing advanced tasks such as dose calculation and treatment planning. Motivated by the promising performance of deep learning in medical imaging, we propose a deep U-net-based approach that synthesizes CT-like images with accurate numbers from planning CT, while keeping the same anatomical structure as on-treatment CBCT.

METHODS

We formulated the CT synthesis problem under a deep learning framework, where a deep U-net architecture was used to take advantage of the anatomical structure of on-treatment CBCT and image intensity information of planning CT. U-net was chosen because it exploits both global and local features in the image spatial domain, matching our task to suppress global scattering artifacts and local artifacts such as noise in CBCT. To train the synthetic CT generation U-net (sCTU-net), we include on-treatment CBCT and initial planning CT of 37 patients (30 for training, seven for validation) as the input. Additional replanning CT images acquired on the same day as CBCT after deformable registration are utilized as the corresponding reference. To demonstrate the effectiveness of the proposed sCTU-net, we use another seven independent patient cases (560 slices) for testing.

RESULTS

We quantitatively compared the resulting synthetic CT (sCT) with the original CBCT image using deformed same-day pCT images as reference. The averaged accuracy measured by mean absolute error (MAE) between sCT and reference CT (rCT) on testing data is 18.98 HU, while MAE between CBCT and rCT is 44.38 HU.

CONCLUSIONS

The proposed sCTU-net can synthesize CT-quality images with accurate CT numbers from on-treatment CBCT and planning CT. This potentially enables advanced CBCT applications for adaptive treatment planning.

摘要

目的

锥形束计算机断层扫描(CBCT)每天或每周(即治疗中 CBCT)用于图像引导放射治疗中精确的患者定位。然而,CT 数的不准确性阻止了 CBCT 执行高级任务,如剂量计算和治疗计划。受深度学习在医学成像中表现出色的启发,我们提出了一种基于深度 U 网的方法,该方法使用从计划 CT 中获取的具有准确数值的 CT 样图像,同时保持与治疗中 CBCT 相同的解剖结构。

方法

我们在深度学习框架下提出了 CT 合成问题,其中深度 U 网结构用于利用治疗中 CBCT 的解剖结构和计划 CT 的图像强度信息。选择 U 网是因为它在图像空间域中利用了全局和局部特征,与我们的任务相匹配,以抑制全局散射伪影和 CBCT 中的局部伪影,如噪声。为了训练合成 CT 生成 U 网(sCTU-net),我们将 37 名患者的治疗中 CBCT 和初始计划 CT(30 名用于训练,7 名用于验证)作为输入。还利用与 CBCT 同一天获取的、经变形注册后的额外重新计划 CT 图像作为相应的参考。为了展示所提出的 sCTU-net 的有效性,我们使用另外 7 个独立的患者病例(560 个切片)进行测试。

结果

我们使用变形的当天 pCT 图像作为参考,将生成的合成 CT(sCT)与原始 CBCT 图像进行定量比较。在测试数据上,sCT 与参考 CT(rCT)之间的平均绝对误差(MAE)的平均值为 18.98 HU,而 CBCT 与 rCT 之间的 MAE 为 44.38 HU。

结论

所提出的 sCTU-net 可以从治疗中 CBCT 和计划 CT 生成具有准确 CT 数的 CT 质量图像。这可能使高级 CBCT 应用能够进行自适应治疗计划。

相似文献

1
Synthetic CT generation from CBCT images via deep learning.
Med Phys. 2020 Mar;47(3):1115-1125. doi: 10.1002/mp.13978. Epub 2020 Jan 13.
2
Synthetic CT generation from CBCT images via unsupervised deep learning.
Phys Med Biol. 2021 May 31;66(11). doi: 10.1088/1361-6560/ac01b6.
3
Streaking artifact reduction for CBCT-based synthetic CT generation in adaptive radiotherapy.
Med Phys. 2023 Feb;50(2):879-893. doi: 10.1002/mp.16017. Epub 2022 Oct 18.
5
Improving CBCT quality to CT level using deep learning with generative adversarial network.
Med Phys. 2021 Jun;48(6):2816-2826. doi: 10.1002/mp.14624. Epub 2021 May 14.
6
Cone-beam CT-derived relative stopping power map generation via deep learning for proton radiotherapy.
Med Phys. 2020 Sep;47(9):4416-4427. doi: 10.1002/mp.14347. Epub 2020 Jul 27.
7
Multiresolution residual deep neural network for improving pelvic CBCT image quality.
Med Phys. 2022 Mar;49(3):1522-1534. doi: 10.1002/mp.15460. Epub 2022 Jan 27.
8
Improving CBCT image quality to the CT level using RegGAN in esophageal cancer adaptive radiotherapy.
Strahlenther Onkol. 2023 May;199(5):485-497. doi: 10.1007/s00066-022-02039-5. Epub 2023 Jan 23.
10
CBCT-Based synthetic CT image generation using conditional denoising diffusion probabilistic model.
Med Phys. 2024 Mar;51(3):1847-1859. doi: 10.1002/mp.16704. Epub 2023 Aug 30.

引用本文的文献

3
New Approaches in Radiotherapy.
Cancers (Basel). 2025 Jun 13;17(12):1980. doi: 10.3390/cancers17121980.
4
Dose calculation accuracy of clinical radiotherapy plans using next generation cone beam computed tomography imaging technology.
Phys Imaging Radiat Oncol. 2025 Mar 22;34:100756. doi: 10.1016/j.phro.2025.100756. eCollection 2025 Apr.
6
[Methods for enhancing image quality of soft tissue regions in synthetic CT based on cone-beam CT].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Feb 25;42(1):113-122. doi: 10.7507/1001-5515.202407078.
7
Three-Dimensional Surgical Guides in Orthodontics: The Present and the Future.
Dent J (Basel). 2025 Feb 8;13(2):74. doi: 10.3390/dj13020074.
9
PE-CycleGAN network based CBCT-sCT generation for nasopharyngeal carsinoma adaptive radiotherapy.
Nan Fang Yi Ke Da Xue Xue Bao. 2025 Jan 20;45(1):179-186. doi: 10.12122/j.issn.1673-4254.2025.01.21.

本文引用的文献

2
Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography.
IEEE Trans Med Imaging. 2018 Jun;37(6):1370-1381. doi: 10.1109/TMI.2018.2823083.
3
Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.
Med Image Anal. 2018 Apr;45:94-107. doi: 10.1016/j.media.2018.01.006. Epub 2018 Feb 1.
4
Reduction of Beam Hardening Artifacts in Cone-Beam CT Imaging via SMART-RECON Algorithm.
Proc SPIE Int Soc Opt Eng. 2016;9783. doi: 10.1117/12.2216882. Epub 2016 Mar 22.
5
An energy minimization method for the correction of cupping artifacts in cone-beam CT.
J Appl Clin Med Phys. 2016 Jul 8;17(4):307-319. doi: 10.1120/jacmp.v17i4.6023.
6
Transfer representation learning for medical image analysis.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:711-4. doi: 10.1109/EMBC.2015.7318461.
7
A practical cone-beam CT scatter correction method with optimized Monte Carlo simulations for image-guided radiation therapy.
Phys Med Biol. 2015 May 7;60(9):3567-87. doi: 10.1088/0031-9155/60/9/3567. Epub 2015 Apr 10.
9
Progressive cone beam CT dose control in image-guided radiation therapy.
Med Phys. 2013 Jun;40(6):060701. doi: 10.1118/1.4804215.
10
Metal artefact reduction with cone beam CT: an in vitro study.
Dentomaxillofac Radiol. 2012 Mar;41(3):248-53. doi: 10.1259/dmfr/80899839. Epub 2012 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验