Suppr超能文献

基于卷积神经网络的 X 射线计算机断层扫描中的金属伪影减少。

Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography.

出版信息

IEEE Trans Med Imaging. 2018 Jun;37(6):1370-1381. doi: 10.1109/TMI.2018.2823083.

Abstract

In the presence of metal implants, metal artifacts are introduced to x-ray computed tomography CT images. Although a large number of metal artifact reduction (MAR) methods have been proposed in the past decades, MAR is still one of the major problems in clinical x-ray CT. In this paper, we develop a convolutional neural network (CNN)-based open MAR framework, which fuses the information from the original and corrected images to suppress artifacts. The proposed approach consists of two phases. In the CNN training phase, we build a database consisting of metal-free, metal-inserted and pre-corrected CT images, and image patches are extracted and used for CNN training. In the MAR phase, the uncorrected and pre-corrected images are used as the input of the trained CNN to generate a CNN image with reduced artifacts. To further reduce the remaining artifacts, water equivalent tissues in a CNN image are set to a uniform value to yield a CNN prior, whose forward projections are used to replace the metal-affected projections, followed by the FBP reconstruction. The effectiveness of the proposed method is validated on both simulated and real data. Experimental results demonstrate the superior MAR capability of the proposed method to its competitors in terms of artifact suppression and preservation of anatomical structures in the vicinity of metal implants.

摘要

在存在金属植入物的情况下,金属伪影会被引入到 X 射线计算机断层扫描(CT)图像中。尽管在过去几十年中已经提出了大量的金属伪影减少(MAR)方法,但 MAR 仍然是临床 X 射线 CT 的主要问题之一。在本文中,我们开发了一种基于卷积神经网络(CNN)的开放式 MAR 框架,该框架融合了原始图像和校正图像的信息,以抑制伪影。所提出的方法包括两个阶段。在 CNN 训练阶段,我们构建了一个由无金属、插入金属和预校正 CT 图像组成的数据库,并提取图像块用于 CNN 训练。在 MAR 阶段,未校正和预校正的图像被用作训练后的 CNN 的输入,以生成具有减少伪影的 CNN 图像。为了进一步减少残留的伪影,将 CNN 图像中的水等效组织设置为均匀值,以生成 CNN 先验,其正向投影用于替代受金属影响的投影,然后进行 FBP 重建。在模拟和真实数据上的实验结果验证了所提出方法在抑制伪影和保留金属植入物附近解剖结构方面比其竞争对手具有更好的 MAR 能力。

相似文献

引用本文的文献

2
New Approaches in Radiotherapy.放射治疗的新方法
Cancers (Basel). 2025 Jun 13;17(12):1980. doi: 10.3390/cancers17121980.
3
Latent space reconstruction for missing data problems in CT.CT中缺失数据问题的潜在空间重建
Med Phys. 2025 Jul;52(7):e17910. doi: 10.1002/mp.17910. Epub 2025 Jun 4.
5
Breast cancer pathology image recognition based on convolutional neural network.基于卷积神经网络的乳腺癌病理图像识别
PLoS One. 2025 May 19;20(5):e0311728. doi: 10.1371/journal.pone.0311728. eCollection 2025.

本文引用的文献

2
Stacked competitive networks for noise reduction in low-dose CT.用于低剂量CT降噪的堆叠竞争网络
PLoS One. 2017 Dec 21;12(12):e0190069. doi: 10.1371/journal.pone.0190069. eCollection 2017.
3
Deep Convolutional Neural Network for Inverse Problems in Imaging.基于深度卷积神经网络的医学影像反问题研究
IEEE Trans Image Process. 2017 Sep;26(9):4509-4522. doi: 10.1109/TIP.2017.2713099. Epub 2017 Jun 15.
4
Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network.采用残差编解码器卷积神经网络的低剂量CT
IEEE Trans Med Imaging. 2017 Dec;36(12):2524-2535. doi: 10.1109/TMI.2017.2715284. Epub 2017 Jun 13.
5
Generative Adversarial Networks for Noise Reduction in Low-Dose CT.生成对抗网络在低剂量 CT 中的噪声降低。
IEEE Trans Med Imaging. 2017 Dec;36(12):2536-2545. doi: 10.1109/TMI.2017.2708987. Epub 2017 May 26.
6
Low-dose CT via convolutional neural network.基于卷积神经网络的低剂量CT
Biomed Opt Express. 2017 Jan 9;8(2):679-694. doi: 10.1364/BOE.8.000679. eCollection 2017 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验