Murakami Taito, Shibata Toshiya, Yasui Yuta, Fujii Kotaro, Hester James R, Yashima Masatomo
Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-17, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.
Kojundo Chemical Laboratory Co. Ltd., 5-1-28, Chiyoda, Sakado, Saitama, 350-0284, Japan.
Small. 2022 Mar;18(10):e2106785. doi: 10.1002/smll.202106785. Epub 2021 Dec 19.
Solid oxide-ion conductors are crucial for enabling clean and efficient energy devices such as solid oxide fuel cells. Hexagonal perovskite-related oxides have been placed at the forefront of high-performance oxide-ion conductors, with Ba Nb Mo O (x = 0-0.1) being an archetypal example. Herein, high oxide-ion conductivity and stability under reducing conditions in Ba Ta Mo O are reported by investigating the solid solutions Ba Ta Mo O (x = 0.2-0.7). Neutron diffraction indicates a large number of interstitial oxide ions in Ba Ta Mo O , leading to a high level of oxide-ion conductivity (e.g., 1.08 × 10 S cm at 377 °C). The conductivity of Ba Ta Mo O is higher than that of Ba Nb MoO and conventional yttria-stabilized zirconia. In contrast to Ba Nb Mo O (x = 0-0.1), the oxide-ion conduction in Ba Ta Mo O is dominant even in highly reducing atmospheres (e.g., oxygen partial pressure of 1.6 × 10 atm at 909 °C). From structural analyses of the synchrotron X-ray diffraction data for Ba Ta Mo O , contrasting X-ray scattering powers of Ta and Mo allow identification of the preferential occupation of Mo adjacent to the intrinsically oxygen-deficient layers, as supported by DFT calculations. The high conductivity and chemical and electrical stability in Ba Ta Mo O provide a strategy for the development of solid electrolytes based on hexagonal perovskite-related oxides.
固体氧化物离子导体对于实现诸如固体氧化物燃料电池等清洁高效的能源设备至关重要。六方钙钛矿相关氧化物一直处于高性能氧化物离子导体的前沿,BaNbMoO(x = 0 - 0.1)就是一个典型例子。在此,通过研究固溶体BaTaMoO(x = 0.2 - 0.7),报道了其在还原条件下具有高的氧化物离子电导率和稳定性。中子衍射表明BaTaMoO中存在大量间隙氧化物离子,导致其具有高水平的氧化物离子电导率(例如,在377°C时为1.08×10 S cm)。BaTaMoO的电导率高于BaNbMoO和传统的氧化钇稳定氧化锆。与BaNbMoO(x = 0 - 0.1)不同,即使在高度还原气氛中(例如,在909°C时氧分压为1.6×10 atm),BaTaMoO中的氧化物离子传导也是占主导的。通过对BaTaMoO的同步辐射X射线衍射数据进行结构分析,Ta和Mo不同的X射线散射能力使得能够确定Mo优先占据与本征缺氧层相邻的位置,这得到了密度泛函理论计算的支持。BaTaMoO中的高电导率以及化学和电学稳定性为基于六方钙钛矿相关氧化物的固体电解质的开发提供了一种策略。