Suppr超能文献

具有弱偶极-偶极相互作用的均相聚合物-离子溶剂化物电解质,可实现长循环软包锂金属电池。

Homogeneous polymer-ionic solvate electrolyte with weak dipole-dipole interaction enabling long cycling pouch lithium metal battery.

作者信息

Chen Likun, Gu Tian, Mi Jinshuo, Li Yuhang, Yang Ke, Ma Jiabin, An Xufei, Jiang Yuyuan, Zhang Danfeng, Cheng Xing, Guo Shaoke, Han Zhuo, Hou Tingzheng, Cao Yidan, Liu Ming, Lv Wei, He Yan-Bing, Kang Feiyu

机构信息

Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

School of Materials Science and Engineering, Tsinghua University, Beijing, China.

出版信息

Nat Commun. 2025 Apr 14;16(1):3517. doi: 10.1038/s41467-025-58689-3.

Abstract

Solid polymer electrolytes (SPEs) are considered as promising electrolytes for high-voltage lithium metal batteries. Whereas, the strong dipole-dipole interaction in polymer electrolytes limits the enhancement of the ionic conductivity. Here, we propose the 1,1,2,2-Tetrafluoroethyl-2,2,3,3-Tetrafluoropropylether (TTE) diluent to significantly regulate the dipole-dipole interaction in polymer-ionic solvate electrolytes (TPISEs). The TTE encapsulates ionic solvate to reduce the dipole-dipole interaction of ionic solvate with the polymer matrix, which promotes their homogeneous distribution, creating a continuous ion percolating network among the polymer matrix. The ion conductivity of TPISEs is therefore enhanced to 1.27×10 S cm at 25 °C. Meanwhile, the TTE induces the ionic solvate to transform from contact ion pairs to aggregates, contributing to a stable lithium/electrolyte interface with exchange current density 190 times larger than that without TTE. The Li||LiNiCoMnO full cells exhibit good cycling stability from -30 °C to 60 °C. The practical pouch cells consisting of a thin Li metal foil (50 μm) and a high-areal-capacity positive electrode (3.58 mAh cm) achieve a high specific energy of 354.4 Wh·kg and maintain 78.1% capacity after 450 cycles at 54 mA g and 25 °C. This work provides a design strategy for SPEs beyond the bottleneck of ionic conductivity for practical solid-state batteries.

摘要

固态聚合物电解质(SPEs)被认为是用于高压锂金属电池的有前景的电解质。然而,聚合物电解质中强烈的偶极-偶极相互作用限制了离子电导率的提高。在此,我们提出使用1,1,2,2-四氟乙基-2,2,3,3-四氟丙醚(TTE)稀释剂来显著调节聚合物-离子溶剂化物电解质(TPISEs)中的偶极-偶极相互作用。TTE包裹离子溶剂化物以减少离子溶剂化物与聚合物基体之间的偶极-偶极相互作用,这促进了它们的均匀分布,在聚合物基体中形成连续的离子渗透网络。因此,TPISEs的离子电导率在25℃时提高到1.27×10 S cm。同时,TTE促使离子溶剂化物从接触离子对转变为聚集体,有助于形成稳定的锂/电解质界面,其交换电流密度比没有TTE时大190倍。Li||LiNiCoMnO全电池在-30℃至60℃范围内表现出良好的循环稳定性。由薄锂金属箔(50μm)和高面积容量正极(3.58 mAh cm)组成的实用软包电池在54 mA g和25℃下450次循环后实现了354.4 Wh·kg的高比能量并保持78.1%的容量。这项工作为SPEs提供了一种设计策略,突破了实用固态电池离子电导率的瓶颈。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e6d/11997189/095099a367dd/41467_2025_58689_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验