Lee Jeongyeon, Song Hyeonjun, Min Kyung-Ah, Guo Qianyi, Kim Daekyu, Zheng Zijian, Han Byungchan, Jung Youngjin, Lee Lawrence Yoon Suk
Department of Applied Biology and Chemical Technology, Research Institute for Smart Energy, The State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul, 156-743, Republic of Korea.
Small Methods. 2021 Jul;5(7):e2100215. doi: 10.1002/smtd.202100215. Epub 2021 Jun 19.
The use of a conducting interlayer between separator and cathode is one of the most promising methods to trap lithium polysulfides (LiPSs) for enhancing the performance of lithium-sulfur (Li-S) batteries. Red phosphorus nanoparticles (RP )-coated carbon nanotube (CNT) film (RP @CF) is reported herein as a novel interlayer for Li-S batteries, which shows strong chemisorption of LiPSs, good flexibility, and excellent electric conductivity. A pulsed laser ablation method is engaged for the ultrafast production of RP of uniform morphology, which are deposited on the CNT film by a direct spinning method. The RP @CF interlayer provides pathways for effective Li and electron transfer and strong chemical interaction with LiPSs. The S/RP @CF electrode shows a superior specific capacity of 782.3 mAh g (3 C-rate) and good cycling performances (769.5 mAh g after 500 cycles at 1 C-rate). Density functional theory calculations reveal that the morphology and dispersibility of RP are crucial in enhancing Li and electron transfer kinetics and effective trap of LiPSs. This work demonstrates the possibility of using the RP @CF interlayer for the enhanced electrochemical performances of Li-S batteries and other flexible energy storage devices.
在隔膜与阴极之间使用导电中间层是捕获多硫化锂(LiPSs)以提高锂硫(Li-S)电池性能最具前景的方法之一。本文报道了一种新型的用于锂硫电池的中间层——红磷纳米颗粒(RP)包覆的碳纳米管(CNT)薄膜(RP@CF),它对LiPSs具有强烈的化学吸附作用、良好的柔韧性和出色的导电性。采用脉冲激光烧蚀法快速制备出形态均匀的RP,并通过直接旋涂法将其沉积在CNT薄膜上。RP@中间层为Li和电子的有效传输提供了通道,并与LiPSs产生强烈的化学相互作用。S/RP@CF电极在3C倍率下具有782.3 mAh g的优异比容量和良好的循环性能(在1C倍率下循环500次后为769.5 mAh g)。密度泛函理论计算表明,RP的形态和分散性对于增强Li和电子传输动力学以及有效捕获LiPSs至关重要。这项工作证明了使用RP@CF中间层来提高锂硫电池和其他柔性储能器件电化学性能的可能性。