Suppr超能文献

通过电分析方法和先进的原位表征技术深入理解钾离子电池的机理

In-Depth Mechanism Understanding for Potassium-Ion Batteries by Electroanalytical Methods and Advanced In Situ Characterization Techniques.

作者信息

Liu Xi, Tong Yong, Wu Yuanji, Zheng Jiefeng, Sun Yingjuan, Li Hongyan

机构信息

Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.

出版信息

Small Methods. 2021 Dec;5(12):e2101130. doi: 10.1002/smtd.202101130. Epub 2021 Oct 27.

Abstract

The advancement of potassium ion batteries (PIBs) stimulated by the dearth of lithium resources is accelerating. Major progresses on the electrochemical properties are based on the optimization of electrode materials, electrolytes, and other components. More significantly, the prerequisites for optimizing these key compositions are in-depth and comprehensive exploration of electrochemical reaction processes, including the evolution of morphology and structure, phase transition, interface behaviors, and K movement, etc. As a result, the obtained K storage mechanism via analyzing aforementioned reaction processes sheds light on furthering practical application of PIBs. Typical electrochemical analysis methods are capable of obtaining physical and chemical characteristics. The advent of in situ electrochemical measurements enables dynamic observation and monitoring, thereby gaining extensive insights into the intricate mechanism of capacity degradation and interface kinetics. By coupling with these powerful electrochemical characterization techniques, inspiring works in PIBs will burgeon into wide realms of energy storage fields. In this review, some typical electroanalytical tests and in situ hyphenated measurements are described with the main concentration on how these techniques play a role in investigating the potassium storage mechanism for PIBs and achieving encouraging results.

摘要

锂资源短缺推动下的钾离子电池(PIBs)发展正在加速。电化学性能方面的主要进展基于电极材料、电解质及其他组件的优化。更重要的是,优化这些关键成分的前提是对电化学反应过程进行深入全面的探索,包括形貌和结构演变、相变、界面行为以及钾离子迁移等。因此,通过分析上述反应过程获得的钾存储机制为推动PIBs的实际应用提供了思路。典型的电化学分析方法能够获取物理和化学特性。原位电化学测量的出现实现了动态观察和监测,从而深入了解容量衰减和界面动力学的复杂机制。通过与这些强大的电化学表征技术相结合,PIBs领域的鼓舞人心的工作将蓬勃发展到广泛的储能领域。在这篇综述中,描述了一些典型的电分析测试和原位联用测量,主要关注这些技术如何在研究PIBs的钾存储机制以及取得令人鼓舞的结果方面发挥作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验