Suppr超能文献

嵌入诱导的转化反应实现高容量钾存储。

Intercalation-Induced Conversion Reactions Give High-Capacity Potassium Storage.

作者信息

Sheng Jinzhi, Wang Tianshuai, Tan Junyang, Lv Wei, Qiu Ling, Zhang Qianfan, Zhou Guangmin, Cheng Hui-Ming

机构信息

Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

School of Materials Science and Engineering, Beihang University, Beijing 100191, China.

出版信息

ACS Nano. 2020 Oct 27;14(10):14026-14035. doi: 10.1021/acsnano.0c06606. Epub 2020 Oct 5.

Abstract

Potassium ion batteries (PIBs) have shown great potential as a next-generation electrochemical energy storage system, due to the natural abundance of potassium and the relatively low redox potential of K ions. To accommodate the large ionic radius of K ions, conversion-type electrode materials are regarded as suitable candidates for K ion storage. However, the triggering mechanism of a conversion reaction in most anode materials of PIBs is unclear, which limits their further development. To reveal the mechanism, in this work, MoSe, MoS, and MoO were selected as model materials, guided by theoretical calculations, to investigate the K ion storage process. Through characterization, it was found that intercalation reactions preferentially occur in MoSe and MoS, while an adsorption reaction preferentially occurs in MoO. This is because of the larger interlayer spacing and lower K ion intercalation barrier in MoSe and MoS than in MoO. The preferential intercalation reactions are able to induce a further conversion reaction by reducing the reaction barrier, thereby realizing high K ion storage capacities. As a result, the MoSe-rGO and MoS-rGO hybrids showed higher reversible capacities than the MoO-rGO hybrid. By demonstrating a relationship between intercalation and the conversion reaction and understanding the mechanism, guidance is provided for selecting the electrode materials to obtain PIBs with high performance.

摘要

钾离子电池(PIBs)作为下一代电化学储能系统已展现出巨大潜力,这归因于钾的天然丰度以及钾离子相对较低的氧化还原电位。为了适应钾离子较大的离子半径,转化型电极材料被视为钾离子存储的合适候选材料。然而,大多数钾离子电池负极材料中转化反应的触发机制尚不清楚,这限制了它们的进一步发展。为了揭示该机制,在这项工作中,以理论计算为指导,选择MoSe、MoS和MoO作为模型材料来研究钾离子存储过程。通过表征发现,嵌入反应优先发生在MoSe和MoS中,而吸附反应优先发生在MoO中。这是因为MoSe和MoS中的层间距比MoO中的更大,钾离子嵌入势垒更低。优先发生的嵌入反应能够通过降低反应势垒诱导进一步的转化反应,从而实现高钾离子存储容量。结果,MoSe-rGO和MoS-rGO杂化物比MoO-rGO杂化物表现出更高的可逆容量。通过阐明嵌入与转化反应之间的关系并理解其机制,为选择电极材料以获得高性能钾离子电池提供了指导。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验