Suppr超能文献

用于编码 RNA 和长非编码 RNA 分类的类相似性网络。

Class similarity network for coding and long non-coding RNA classification.

机构信息

School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.

Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK.

出版信息

BMC Bioinformatics. 2021 Dec 20;22(1):609. doi: 10.1186/s12859-021-04517-6.

Abstract

BACKGROUND

Long non-coding RNAs (lncRNAs) play significant roles in varieties of physiological and pathological processes.The premise of the lncRNA functional study is that the lncRNAs are identified correctly. Recently, deep learning method like convolutional neural network (CNN) has been successfully applied to identify the lncRNAs. However, the traditional CNN considers little relationships among samples via an indirect way.

RESULTS

Inspired by the Siamese Neural Network (SNN), here we propose a novel network named Class Similarity Network in coding RNA and lncRNA classification. Class Similarity Network considers more relationships among input samples in a direct way. It focuses on exploring the potential relationships between input samples and samples from both the same class and the different classes. To achieve this, Class Similarity Network trains the parameters specific to each class to obtain the high-level features and represents the general similarity to each class in a node. The comparison results on the validation dataset under the same conditions illustrate the superiority of our Class Similarity Network to the baseline CNN. Besides, our method performs effectively and achieves state-of-the-art performances on two test datasets.

CONCLUSIONS

We construct Class Similarity Network in coding RNA and lncRNA classification, which is shown to work effectively on two different datasets by achieving accuracy, precision, and F1-score as 98.43%, 0.9247, 0.9374, and 97.54%, 0.9990, 0.9860, respectively.

摘要

背景

长链非编码 RNA(lncRNA)在多种生理和病理过程中发挥着重要作用。lncRNA 功能研究的前提是正确识别 lncRNA。最近,卷积神经网络(CNN)等深度学习方法已成功应用于 lncRNA 的识别。然而,传统的 CNN 通过间接的方式考虑到样本之间的关系较少。

结果

受孪生神经网络(SNN)的启发,我们提出了一种新的网络,称为编码 RNA 和 lncRNA 分类中的类相似性网络。类相似性网络以直接的方式考虑到输入样本之间更多的关系。它专注于探索输入样本与同一类和不同类样本之间的潜在关系。为了实现这一点,类相似性网络针对每个类训练特定的参数,以获得高级特征,并在节点中表示与每个类的一般相似性。在相同条件下对验证数据集的比较结果表明,我们的类相似性网络优于基线 CNN。此外,我们的方法在两个测试数据集上也表现出有效性,达到了最先进的性能。

结论

我们构建了编码 RNA 和 lncRNA 分类中的类相似性网络,通过在两个不同数据集上实现准确率、精度和 F1 得分为 98.43%、0.9247、0.9374 和 97.54%、0.9990、0.9860,分别证明了其在两个数据集上的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d694/8691036/0bad13c20054/12859_2021_4517_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验