Suppr超能文献

暹罗神经网络:概述。

Siamese Neural Networks: An Overview.

机构信息

Krembil Research Institute, Toronto, Ontario, Canada.

出版信息

Methods Mol Biol. 2021;2190:73-94. doi: 10.1007/978-1-0716-0826-5_3.

Abstract

Similarity has always been a key aspect in computer science and statistics. Any time two element vectors are compared, many different similarity approaches can be used, depending on the final goal of the comparison (Euclidean distance, Pearson correlation coefficient, Spearman's rank correlation coefficient, and others). But if the comparison has to be applied to more complex data samples, with features having different dimensionality and types which might need compression before processing, these measures would be unsuitable. In these cases, a siamese neural network may be the best choice: it consists of two identical artificial neural networks each capable of learning the hidden representation of an input vector. The two neural networks are both feedforward perceptrons, and employ error back-propagation during training; they work parallelly in tandem and compare their outputs at the end, usually through a cosine distance. The output generated by a siamese neural network execution can be considered the semantic similarity between the projected representation of the two input vectors. In this overview we first describe the siamese neural network architecture, and then we outline its main applications in a number of computational fields since its appearance in 1994. Additionally, we list the programming languages, software packages, tutorials, and guides that can be practically used by readers to implement this powerful machine learning model.

摘要

相似性一直是计算机科学和统计学中的一个关键方面。任何时候比较两个元素向量时,都可以根据比较的最终目标(欧几里得距离、皮尔逊相关系数、斯皮尔曼等级相关系数等)使用许多不同的相似性方法。但是,如果比较必须应用于更复杂的数据样本,这些数据样本具有不同维度和类型的特征,在处理之前可能需要压缩,那么这些措施将不适用。在这些情况下,孪生神经网络可能是最佳选择:它由两个相同的人工神经网络组成,每个神经网络都能够学习输入向量的隐藏表示。两个神经网络都是前馈感知器,在训练过程中采用误差反向传播;它们在并行中协同工作,并在最后比较它们的输出,通常通过余弦距离。执行孪生神经网络生成的输出可以被认为是两个输入向量的投影表示之间的语义相似性。在本篇综述中,我们首先描述了孪生神经网络的架构,然后概述了自 1994 年出现以来它在许多计算领域中的主要应用。此外,我们列出了读者实际可以使用的编程语言、软件包、教程和指南,以实现这个强大的机器学习模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验