Suppr超能文献

CNN-Siam:基于双通道 CNN 的深度学习方法用于药物-药物相互作用预测。

CNN-Siam: multimodal siamese CNN-based deep learning approach for drug‒drug interaction prediction.

机构信息

Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, Jiangsu, China.

Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, Jiangsu, China.

出版信息

BMC Bioinformatics. 2023 Mar 23;24(1):110. doi: 10.1186/s12859-023-05242-y.

Abstract

BACKGROUND

Drug‒drug interactions (DDIs) are reactions between two or more drugs, i.e., possible situations that occur when two or more drugs are used simultaneously. DDIs act as an important link in both drug development and clinical treatment. Since it is not possible to study the interactions of such a large number of drugs using experimental means, a computer-based deep learning solution is always worth investigating. We propose a deep learning-based model that uses twin convolutional neural networks to learn representations from multimodal drug data and to make predictions about the possible types of drug effects.

RESULTS

In this paper, we propose a novel convolutional neural network algorithm using a Siamese network architecture called CNN-Siam. CNN-Siam uses a convolutional neural network (CNN) as a backbone network in the form of a twin network architecture to learn the feature representation of drug pairs from multimodal data of drugs (including chemical substructures, targets and enzymes). Moreover, this network is used to predict the types of drug interactions with the best optimization algorithms available (RAdam and LookAhead). The experimental data show that the CNN-Siam achieves an area under the precision-recall (AUPR) curve score of 0.96 on the benchmark dataset and a correct rate of 92%. These results are significant improvements compared to the state-of-the-art method (from 86 to 92%) and demonstrate the robustness of the CNN-Siam and the superiority of the new optimization algorithm through ablation experiments.

CONCLUSION

The experimental results show that our multimodal siamese convolutional neural network can accurately predict DDIs, and the Siamese network architecture is able to learn the feature representation of drug pairs better than individual networks. CNN-Siam outperforms other state-of-the-art algorithms with the combination of data enhancement and better optimizers. But at the same time, CNN-Siam has some drawbacks, longer training time, generalization needs to be improved, and poorer classification results on some classes.

摘要

背景

药物-药物相互作用(DDI)是两种或多种药物之间的反应,即当两种或多种药物同时使用时可能发生的情况。DDI 是药物开发和临床治疗的重要环节。由于不可能通过实验手段研究如此大量的药物相互作用,因此基于计算机的深度学习解决方案始终值得研究。我们提出了一种基于深度学习的模型,该模型使用双卷积神经网络从多模态药物数据中学习表示,并对可能的药物作用类型进行预测。

结果

在本文中,我们提出了一种新颖的卷积神经网络算法,该算法使用称为 CNN-Siam 的孪生网络架构的卷积神经网络。CNN-Siam 使用卷积神经网络(CNN)作为孪生网络架构的主干网络,从药物的多模态数据(包括化学结构、靶标和酶)中学习药物对的特征表示。此外,该网络用于使用可用的最佳优化算法(RAdam 和 LookAhead)预测药物相互作用的类型。实验数据表明,CNN-Siam 在基准数据集上的精度-召回率(AUPR)曲线下面积得分为 0.96,准确率为 92%。与最先进的方法(从 86%提高到 92%)相比,这些结果有了显著的提高,通过消融实验证明了 CNN-Siam 的鲁棒性和新优化算法的优越性。

结论

实验结果表明,我们的多模态孪生卷积神经网络可以准确预测 DDI,并且孪生网络架构能够比单个网络更好地学习药物对的特征表示。CNN-Siam 通过数据增强和更好的优化器的结合,优于其他最先进的算法。但同时,CNN-Siam 也存在一些缺点,如训练时间较长、泛化能力有待提高以及在某些类上的分类效果较差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5768/10037822/ae823926fa12/12859_2023_5242_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验