Donnelly Claire, Hierro-Rodríguez Aurelio, Abert Claas, Witte Katharina, Skoric Luka, Sanz-Hernández Dédalo, Finizio Simone, Meng Fanfan, McVitie Stephen, Raabe Jörg, Suess Dieter, Cowburn Russell, Fernández-Pacheco Amalio
Cavendish Laboratory, University of Cambridge, Cambridge, UK.
Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
Nat Nanotechnol. 2022 Feb;17(2):136-142. doi: 10.1038/s41565-021-01027-7. Epub 2021 Dec 20.
The design of complex, competing effects in magnetic systems-be it via the introduction of nonlinear interactions, or the patterning of three-dimensional geometries-is an emerging route to achieve new functionalities. In particular, through the design of three-dimensional geometries and curvature, intrastructure properties such as anisotropy and chirality, both geometry-induced and intrinsic, can be directly controlled, leading to a host of new physics and functionalities, such as three-dimensional chiral spin states, ultrafast chiral domain wall dynamics and spin textures with new spin topologies. Here, we advance beyond the control of intrastructure properties in three dimensions and tailor the magnetostatic coupling of neighbouring magnetic structures, an interstructure property that allows us to generate complex textures in the magnetic stray field. For this, we harness direct write nanofabrication techniques, creating intertwined nanomagnetic cobalt double helices, where curvature, torsion, chirality and magnetic coupling are jointly exploited. By reconstructing the three-dimensional vectorial magnetic state of the double helices with soft-X-ray magnetic laminography, we identify the presence of a regular array of highly coupled locked domain wall pairs in neighbouring helices. Micromagnetic simulations reveal that the magnetization configuration leads to the formation of an array of complex textures in the magnetic induction, consisting of vortices in the magnetization and antivortices in free space, which together form an effective B field cross-tie wall. The design and creation of complex three-dimensional magnetic field nanotextures opens new possibilities for smart materials, unconventional computing, particle trapping and magnetic imaging.
在磁系统中设计复杂的竞争效应——无论是通过引入非线性相互作用,还是通过三维几何结构的图案化——是实现新功能的一条新兴途径。特别是,通过设计三维几何结构和曲率,可以直接控制诸如各向异性和手性等内部结构特性,这些特性既由几何结构引起,也有其固有属性,从而带来一系列新的物理现象和功能,如三维手性自旋态、超快手性畴壁动力学以及具有新自旋拓扑结构的自旋纹理。在此,我们超越了对三维内部结构特性的控制,对相邻磁性结构的静磁耦合进行了调整,这种结构间属性使我们能够在磁杂散场中生成复杂的纹理。为此,我们利用直写纳米制造技术,制造出相互缠绕的纳米磁性钴双螺旋结构,其中曲率、扭转、手性和磁耦合被共同利用。通过用软X射线磁层成像重建双螺旋结构的三维矢量磁状态,我们确定了相邻螺旋中存在高度耦合的锁定畴壁对的规则阵列。微磁模拟表明,磁化配置导致在磁感应中形成一系列复杂的纹理,包括磁化中的涡旋和自由空间中的反涡旋,它们共同形成一个有效的B场交叉壁。复杂三维磁场纳米纹理的设计和创建为智能材料、非常规计算、粒子捕获和磁成像开辟了新的可能性。