Suppr超能文献

上皮细胞无 Wnt 调节出生后肺泡发生。

Epithelial Wntless regulates postnatal alveologenesis.

机构信息

Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA.

Tianjin Haihe Hospital, Tianjin, Tianjin 300350, China.

出版信息

Development. 2022 Jan 1;149(1). doi: 10.1242/dev.199505. Epub 2022 Jan 10.

Abstract

Alveologenesis requires the coordinated modulation of the epithelial and mesenchymal compartments to generate mature alveolar saccules for efficient gas exchange. However, the molecular mechanisms underlying the epithelial-mesenchymal interaction during alveologenesis are poorly understood. Here, we report that Wnts produced by epithelial cells are crucial for neonatal alveologenesis. Deletion of the Wnt chaperone protein Wntless homolog (Wls) disrupts alveolar formation, resulting in enlarged saccules in Sftpc-Cre/Nkx2.1-Cre; Wlsloxp/loxp mutants. Although commitment of the alveolar epithelium is unaffected, α-SMA+ mesenchymal cells persist in the alveoli, accompanied by increased collagen deposition, and mutants exhibit exacerbated fibrosis following bleomycin challenge. Notably, α-SMA+ cells include a significant number of endothelial cells resembling endothelial to mesenchymal transition (EndMT), which is also present in Ager-CreER; Wlsloxp/loxp mutants following early postnatal Wls deletion. These findings provide initial evidence that epithelial-derived Wnts are crucial for the differentiation of the surrounding mesenchyme during early postnatal alveologenesis.

摘要

肺泡发生需要上皮细胞和间充质细胞的协调调节,以产生成熟的肺泡小泡,从而实现有效的气体交换。然而,肺泡发生过程中上皮-间充质相互作用的分子机制还知之甚少。在这里,我们报告说,上皮细胞产生的 Wnts 对于新生儿肺泡发生至关重要。Wnt 伴侣蛋白 Wntless 同源物 (Wls) 的缺失破坏了肺泡的形成,导致 Sftpc-Cre/Nkx2.1-Cre; Wlsloxp/loxp 突变体中肺泡囊增大。尽管肺泡上皮的分化不受影响,但 α-SMA+间充质细胞仍然存在于肺泡中,伴随着胶原沉积的增加,并且突变体在博来霉素刺激后表现出更严重的纤维化。值得注意的是,α-SMA+细胞包括相当数量的类似于内皮到间充质转化 (EndMT) 的内皮细胞,这也存在于 Ager-CreER; Wlsloxp/loxp 突变体在出生后早期 Wls 缺失后。这些发现提供了初步证据,表明上皮来源的 Wnts 对于出生后早期肺泡发生过程中周围间充质的分化至关重要。

相似文献

1
Epithelial Wntless regulates postnatal alveologenesis.
Development. 2022 Jan 1;149(1). doi: 10.1242/dev.199505. Epub 2022 Jan 10.
2
A three-dimensional study of alveologenesis in mouse lung.
Dev Biol. 2016 Jan 15;409(2):429-41. doi: 10.1016/j.ydbio.2015.11.017. Epub 2015 Nov 26.
4
β-catenin induces A549 alveolar epithelial cell mesenchymal transition during pulmonary fibrosis.
Mol Med Rep. 2015 Apr;11(4):2703-10. doi: 10.3892/mmr.2014.3013. Epub 2014 Nov 27.
5
Deficiency of CARMA3 attenuates the development of bleomycin induced pulmonary fibrosis.
Biochem Biophys Res Commun. 2021 Dec 3;581:81-88. doi: 10.1016/j.bbrc.2021.10.013. Epub 2021 Oct 11.
6
Wntless is required for peripheral lung differentiation and pulmonary vascular development.
Dev Biol. 2013 Jul 1;379(1):38-52. doi: 10.1016/j.ydbio.2013.03.010. Epub 2013 Mar 21.
8
Colonic healing requires Wnt produced by epithelium as well as Tagln+ and Acta2+ stromal cells.
Development. 2022 Jan 1;149(1). doi: 10.1242/dev.199587. Epub 2022 Jan 12.
9
Gpr177 regulates pulmonary vasculature development.
Development. 2013 Sep;140(17):3589-94. doi: 10.1242/dev.095471. Epub 2013 Jul 24.

引用本文的文献

1
RUNX2 promotes fibrosis via an alveolar-to-pathological fibroblast transition.
Nature. 2025 Apr;640(8057):221-230. doi: 10.1038/s41586-024-08542-2. Epub 2025 Feb 5.
2
Dynamic Hippo pathway activity underlies mesenchymal differentiation during lung alveolar morphogenesis.
Development. 2024 Apr 15;151(8). doi: 10.1242/dev.202430. Epub 2024 Apr 23.
3
Identification of a myofibroblast differentiation program during neonatal lung development.
Development. 2024 May 1;151(9). doi: 10.1242/dev.202659. Epub 2024 May 13.
4
Cell Cross-Talk in Alveolar Microenvironment: From Lung Injury to Fibrosis.
Am J Respir Cell Mol Biol. 2024 Jul;71(1):30-42. doi: 10.1165/rcmb.2023-0426TR.
5
Single Cell Analysis of Lung Lymphatic Endothelial Cells and Lymphatic Responses during Influenza Infection.
J Respir Biol Transl Med. 2024 Mar;1(1). doi: 10.35534/jrbtm.2024.10003. Epub 2024 Feb 19.
6
The role of Evi/Wntless in exporting Wnt proteins.
Development. 2023 Feb 15;150(3). doi: 10.1242/dev.201352. Epub 2023 Feb 10.

本文引用的文献

1
VEGF receptor 2 (KDR) protects airways from mucus metaplasia through a Sox9-dependent pathway.
Dev Cell. 2021 Jun 7;56(11):1646-1660.e5. doi: 10.1016/j.devcel.2021.04.027. Epub 2021 May 18.
2
Age-dependent alveolar epithelial plasticity orchestrates lung homeostasis and regeneration.
Cell Stem Cell. 2021 Oct 7;28(10):1775-1789.e5. doi: 10.1016/j.stem.2021.04.026. Epub 2021 May 10.
3
Genomic, epigenomic, and biophysical cues controlling the emergence of the lung alveolus.
Science. 2021 Mar 12;371(6534). doi: 10.1126/science.abc3172.
5
7
Epithelial Vegfa Specifies a Distinct Endothelial Population in the Mouse Lung.
Dev Cell. 2020 Mar 9;52(5):617-630.e6. doi: 10.1016/j.devcel.2020.01.009. Epub 2020 Feb 13.
8
WNT/RYK signaling restricts goblet cell differentiation during lung development and repair.
Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):25697-25706. doi: 10.1073/pnas.1911071116. Epub 2019 Nov 27.
9
Bronchopulmonary dysplasia.
Nat Rev Dis Primers. 2019 Nov 14;5(1):78. doi: 10.1038/s41572-019-0127-7.
10
Pulmonary endothelial cells exhibit sexual dimorphism in their response to hyperoxia.
Am J Physiol Heart Circ Physiol. 2018 Nov 1;315(5):H1287-H1292. doi: 10.1152/ajpheart.00416.2018. Epub 2018 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验