Suppr超能文献

用于预测社区居住老年人肌肉减少症的列线图的开发与验证

Development and Validation of a Nomogram for Predicting Sarcopenia in Community-Dwelling Older Adults.

作者信息

Mo Yi-Han, Su Yi-Dong, Dong Xin, Zhong Jing, Yang Chen, Deng Wen-Yu, Yao Xue-Mei, Liu Bei-Bei, Wang Xiu-Hua

机构信息

Cicely Saunders Institute of Palliative Care, Policy and Rehabilitation, Florence Nightingale Faculty of Nursing, Midwifery and Palliative Care, King's College London, London, United Kingdom.

Xiangya Nursing School, The Central South University, Changsha, China.

出版信息

J Am Med Dir Assoc. 2022 May;23(5):715-721.e5. doi: 10.1016/j.jamda.2021.11.023. Epub 2021 Dec 20.

Abstract

OBJECTIVE

To establish and validate a nomogram that predicts the risk of sarcopenia for community-dwelling older residents.

DESIGN

Retrospective study.

SETTING AND PARTICIPANTS

A total of 1050 community-dwelling older adults.

METHODS

Data from a survey of community-dwelling older residents (≥60 years old) in Hunan, China, from June to September 2019 were retrospectively analyzed. The survey included general demographic information, diet, and exercise habits. Sarcopenia diagnosis was according to 2019 Asian Working Group for Sarcopenia criteria. Participants were randomly divided into the development group and validation groups. Independent risk factors were screened by multivariate logistic regression analysis. Based on the independent risk factors, a nomogram model was developed to predict the risk of sarcopenia for community-dwelling older adults. Both in the development and validation sets, the discrimination, calibration, and clinical practicability of the nomogram were verified using receiver operating characteristic curve analysis, Hosmer-Lemeshow test, and decision curve analysis, respectively.

RESULTS

Sarcopenia was identified in 263 (25.0%) participants. Age, body mass index, marital status, regular physical activity habit, uninterrupted sedentary time, and dietary diversity score were significant contributors to sarcopenia risk. A nomogram for predicting sarcopenia in community-dwelling older adults was developed using these factors. Receiver operating characteristic curve analysis showed that the area under the curve was 0.827 (95% CI 0.792-0.860) and 0.755 (95% CI 0.680-0.837) in the development and validation sets, respectively. The Hosmer-Lemeshow test yielded P values of .609 and .565, respectively, for the 2 sets. The nomogram demonstrated a high net benefit in the clinical decision curve in both sets.

CONCLUSIONS AND IMPLICATIONS

This study developed and validated a risk prediction nomogram for sarcopenia among community-dwelling older adults. Sarcopenia risk was classified as low (<11%), moderate (11%-70%), and high (>70%). This nomogram provides an accurate visual tool to medical staff, caregivers, and older adults for prediction, early intervention, and graded management of sarcopenia.

摘要

目的

建立并验证一种预测社区居住老年居民肌肉减少症风险的列线图。

设计

回顾性研究。

设置与参与者

共1050名社区居住的老年人。

方法

回顾性分析2019年6月至9月在中国湖南对社区居住老年居民(≥60岁)进行的一项调查数据。该调查包括一般人口统计学信息、饮食和运动习惯。肌肉减少症诊断依据2019年亚洲肌肉减少症工作组标准。参与者被随机分为开发组和验证组。通过多因素逻辑回归分析筛选独立危险因素。基于独立危险因素,建立一个列线图模型来预测社区居住老年人肌肉减少症的风险。在开发集和验证集中,分别使用受试者工作特征曲线分析、Hosmer-Lemeshow检验和决策曲线分析来验证列线图的区分度、校准度和临床实用性。

结果

263名(25.0%)参与者被诊断为肌肉减少症。年龄、体重指数、婚姻状况、规律体育活动习惯、不间断久坐时间和饮食多样性得分是肌肉减少症风险的重要影响因素。利用这些因素建立了一个预测社区居住老年人肌肉减少症的列线图。受试者工作特征曲线分析显示,开发集和验证集中曲线下面积分别为0.827(95%CI 0.792 - 0.860)和0.755(95%CI 0.680 - 0.837)。Hosmer-Lemeshow检验在这两个数据集中的P值分别为0.609和0.565。列线图在两个数据集中的临床决策曲线中均显示出较高的净效益。

结论与意义

本研究建立并验证了一种针对社区居住老年人肌肉减少症的风险预测列线图。肌肉减少症风险分为低(<11%)、中(11% - 70%)和高(>70%)。该列线图为医护人员、护理人员和老年人提供了一个准确的可视化工具,用于肌肉减少症的预测、早期干预和分级管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验