Suppr超能文献

评估类风湿关节炎患者肌少症风险的预测模型的建立和验证。

Development and validation of a predictive model assessing the risk of sarcopenia in rheumatoid arthritis patients.

机构信息

First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.

Spinal and Spinal Cord Department, Shandong Wendeng Osteopathic Hospital, Weihai, China.

出版信息

Front Immunol. 2024 Jul 29;15:1437980. doi: 10.3389/fimmu.2024.1437980. eCollection 2024.

Abstract

BACKGROUND

Sarcopenia is linked to an unfavorable prognosis in individuals with rheumatoid arthritis (RA). Early identification and treatment of sarcopenia are clinically significant. This study aimed to create and validate a nomogram for predicting sarcopenia risk in RA patients, providing clinicians with a reliable tool for the early identification of high-risk patients.

METHODS

Patients with RA diagnosed between August 2022 and January 2024 were included and randomized into training and validation sets in a 7:3 ratio. Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis and multifactorial logistic regression analysis were used to screen the risk variables for RA-associated muscle loss and to create an RA sarcopenia risk score. The predictive performance and clinical utility of the risk model were evaluated by plotting the receiver operating characteristic curve and calculating the area under the curve (AUC), along with the calibration curve and clinical decision curve (DCA).

RESULTS

A total of 480 patients with RA were included in the study (90% female, with the largest number in the 45-59 age group, about 50%). In this study, four variables (body mass index, disease duration, hemoglobin, and grip strength) were included to construct a nomogram for predicting RA sarcopenia. The training and validation set AUCs were 0.915 (95% CI: 0.8795-0.9498) and 0.907 (95% CI: 0.8552-0.9597), respectively, proving that the predictive model was well discriminated. The calibration curve showed that the predicted values of the model were basically in line with the actual values, demonstrating good calibration. The DCA indicated that almost the entire range of patients with RA can benefit from this novel prediction model, suggesting good clinical utility.

CONCLUSION

This study developed and validated a nomogram prediction model to predict the risk of sarcopenia in RA patients. The model can assist clinicians in enhancing their ability to screen for RA sarcopenia, assess patient prognosis, make early decisions, and improve the quality of life for RA patients.

摘要

背景

肌少症与类风湿关节炎(RA)患者的不良预后相关。早期识别和治疗肌少症具有重要的临床意义。本研究旨在建立和验证一种预测 RA 患者肌少症风险的列线图,为临床医生提供一种可靠的工具,以早期识别高危患者。

方法

纳入 2022 年 8 月至 2024 年 1 月期间诊断为 RA 的患者,并按照 7:3 的比例随机分为训练集和验证集。采用最小绝对收缩和选择算子(LASSO)回归分析和多因素逻辑回归分析筛选与 RA 相关的肌肉丢失风险变量,并构建 RA 肌少症风险评分。通过绘制受试者工作特征曲线和计算曲线下面积(AUC),以及校准曲线和临床决策曲线(DCA)来评估风险模型的预测性能和临床实用性。

结果

本研究共纳入 480 例 RA 患者(90%为女性,最大年龄组为 45-59 岁,约占 50%)。本研究纳入了 4 个变量(体重指数、病程、血红蛋白和握力)构建预测 RA 肌少症的列线图。训练集和验证集的 AUC 分别为 0.915(95%CI:0.8795-0.9498)和 0.907(95%CI:0.8552-0.9597),表明预测模型具有良好的区分度。校准曲线表明模型的预测值与实际值基本一致,表明具有良好的校准度。DCA 表明,RA 患者的几乎整个范围都可以从这个新的预测模型中获益,表明具有良好的临床实用性。

结论

本研究建立并验证了一种预测 RA 患者肌少症风险的列线图预测模型。该模型可以帮助临床医生提高筛查 RA 肌少症的能力,评估患者的预后,做出早期决策,并提高 RA 患者的生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a3/11317408/9c9b416b7e17/fimmu-15-1437980-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验